References
[1]. An, F. P., Lin, D. C., Zhou, X. W., & Sun, Z. (2015). Enhancing image denoising performance of bidimensional empirical mode decomposition by improving the edge effect. International Journal of Antennas and Propogation. https://doi.org/10.1155/2015/769478
[2]. Damerval, C., Meignen, S., & Perrier, V. (2005). A fast algorithm for Bi-dimensional EMD. IEEE Signal Processing Letters. 12(10), 701–704. https://doi.org/10.1109/LSP.2005. 855548
[3]. Dong, W., Li, X. E., Lin, X., & Li, Z. (2014). A bidimensional empirical mode decomposition method for fusion of multispectral and panchromatic remote sensing images. Remote Sensing, 6(9), 8446-8467. https://doi.org/10.3390/rs6098446
[4]. Hariharan, H., Gribok, A., Abidi, M. A., & Koschan, A. (2006). Image fusion and enhancement via empirical mode decomposition. Journal of Pattern Recognition Research, 1(1), 16-32.
[5]. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. https://doi.org/10.1098/ rspa.1998.0193
[6]. Li, H., Chai, Y., & Li, Z. (2013). Multi-focus image fusion based on non sub sampled contour let transform and focused regions detection. Optik, 124(1), 40-51. https://doi.org/10.1016/j.ijleo.2011.11.088
[7]. Liang, L. F., & Ping, Z. L. (2010). Medical image enhancement based on window empirical mode decomposition algorithm. Journal of Optoelectronics Laser, 21(9), 1421-1425.
[8]. Lin, Y. R., & Wang, Q. (2011). Extracting details from images based on 1-DEMD. Journal of Jilin University (Engineering and Technology Edition), 41(6), 1766-1770.
[9]. Linderhed, A. (2002, March). 2D empirical mode decompositions in the spirit of image compression. In Wavelet and Independent Component Analysis Applications IX (Vol. 4738, pp. 1-8). https://doi.org/10.1117/ 12.458772
[10]. Nunes, J. C., Bouaoune, Y., Delechelle, E., Niang, O., & Bunel, P. (2003). Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing, 21(12), 1019-1026. https://doi.org/10.1016/S0 262-8856(03)00094-5
[11]. Nunes, J. C., Guyot, S., & Deléchelle, E. (2005). Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision and Applications, 16(3), 177-188. https://doi. org/10.1007/s00138-004-0170-5
[12]. Pajares, G., & De La Cruz, J. M. (2004). A waveletbased image fusion tutorial. Pattern Recognition, 37(9), 1855-1872. https://doi.org/10.1016/j.patcog.2004.03.010
[13]. Qiao, L. H., Peng, L. Z., Guo, W., & Yuan, W. T. (2008, July). A novel image fusion algorithm based on 2D EMD and IHS. In 2008 International Conference on Machine Learning and Cybernetics (Vol. 7, pp. 4040-4044). IEEE. https://doi.org/10.1109/ICMLC.2008.4621109
[14]. Radhika, V., Veeraswamy, K., & Kumar, S. S. (2018). Digital image fusion using HVS in block based transforms. Journal of Signal Processing Systems, 90(6), 947-957. https://doi.org/10.1007/s11265-017-1252-8
[15]. Tanaka, T., & Mandic, D. P. (2007). Complex empirical mode decomposition. IEEE Signal Processing Letters, 14(2), 101-104. https://doi.org/10.1109/LSP.2006.882107
[16]. Xu, G. L., Wang, X. T., Xu, X. G., & Zhu, T. (2006). Image enhancement algorithm based on neighborhood limited empirical mode decomposition. DianziXuebao (Acta Electronica Sinica), 34(9), 1635-1639.
[17]. Zhang, B., Zhang, C., Wu, J., & Liu, H. (2014). A medical image fusion method based on energy classification of BEMD components. Optik, 125(1), 146- 153. https://doi.org/10.1016/j.ijleo.2013.06.075
[18]. Zheng, Y., & Qin, Z. (2009). Region-based image fusion method using bidimensional empirical mode decomposition. Journal of Electronic Imaging, 18(1), 013008. https://doi.org/10.1117/1.3099703