Trending Applications and Mechanical Properties of 3D Printing: A Review

Rakesh Kumar*, Rajesh Sharma **, Santosh Kumar ***, Naman Goyal ****
*-**** Department of Mechanical Engineering, Chandigarh Group of Colleges - Chandigarh College of Engineering, Mohali, Punjab, India.
Periodicity:November - January'2021
DOI : https://doi.org/10.26634/jme.11.1.17627

Abstract

Mass customization, ability to manufacture complicated shapes, material complexity, fast prototyping, no need of cutting tools, coolants and other auxiliary resources are the key advantages of 3D printing. This emerging technology enables to fabricate physical component directly from the CAD data by deposition of material in layer fashion without wastage. Hence, in this paper a comprehensive review of the dominant 3D printing techniques, evolution and their trending applications is carried out. In addition, the applications of 3D printing in medical, automotive, fabric and fashion, electronic, architecture, aerospace, food, etc. are discussed. Overall, this review paper discussed the literatures on mechanical properties of distinct additive manufacturing (AM) techniques, trending applications, future scope and challenges in the area of 3D printing.

Keywords

3D Printing, Computer Aided Design, Mechanical Properties, Applications, Challenges.

How to Cite this Article?

Kumar, R., Sharma, R., Kumar, S., and Goyal, N. (2021). Trending Applications and Mechanical Properties of 3D Printing: A Review. i-manager's Journal on Mechanical Engineering, 11(1), 22-39. https://doi.org/10.26634/jme.11.1.17627

References

[1]. Ashish, K., Nabeel, A., Gopinath, P., & Alexandr, V. (2019). 3D Printing in Medicine: Current Challenges and Potential Applications. https://doi.org/10.1016/B978-0-12- 815890-6.00001-3
[2]. Athreya, S. R., Kalaitzidou, K., & Das, S. (2010). Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Materials Science and Engineering: A, 527(10-11), 2637-2642.
[3]. Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677-688. https:// doi.org/10.1016/j.bushor.2017.05.011
[4]. Azari, A., & Nikzad, S. (2009). The evolution of rapid prototyping in dentistry: A review. Rapid Prototyping Journal, 15(3), 216-222.
[5]. Balla, V. K., Bandyopadhyay, P. P., Bose, S., & Bandyopadhyay, A. (2007). Compositionally graded yttriastabilized zirconia coating on stainless steel using laser engineered net shaping (LENS™). Scripta Materialia, 57(9), 861-864.
[6]. Baron, B. (2011). Multifunctional airframe concepts with structurally integrated electronics e-direct part manufacturing workshop. Wright State University.
[7]. Bartolomeu, F., Buciumeanu, M., Pinto, E., Alves, N., Carvalho, O., Silva, F. S., & Miranda, G. (2017). 316L stainless steel mechanical and tribological behavior: A comparison between selective laser melting, hot pressing and conventional casting. Additive Manufacturing, 16, 81-89.
[8]. Baufeld, B., Van der Biest, O., & Gault, R. (2010). Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties. Materials & Design, 31, S106-S111. https://doi. org/10.1016/j.matdes.2009.11.032
[9]. Bedi, T. S., Kumar, S., & Kumar, R. (2019). Corrosion performance of hydroxyapaite and hydroxyapaite/ titaniabond coating for biomedical applications. Materials Research Express, 12, 25-37. https://doi.org/10.1088/205 3-1591/ab5cc5
[10]. Biamino, S., Klöden, B., Weißgärber, T., Kieback, B., & Ackelid, U. (2014, March). Properties of a TiAl turbocharger wheel produced by electron beam melting. In Fraunhofer Direct Digital Manufacturing Conference DDMC (pp. 1-4).
[11]. Bogue, R. (2013). 3D printing: The dawn of a new era in manufacturing? Assembly Automation, 33(4), 307-311.
[12]. Borille, A. V., de Oliveira Gomes, J., & Lopes, D. (2017). Geometrical analysis and tensile behaviour of parts manufactured with flame retardant polymers by additive manufacturing. Rapid Prototyping Journal, 23(1), 169-180.
[13]. Buswell, R. A., Soar, R. C., Gibb, A. G., & Thorpe, A. (2007). Freeform construction: Mega-scale rapid manufacturing for construction. Automation in Construction, 16(2), 224-231.
[14]. Caminero, M. A., Chacón, J. M., García-Moreno, I., & Rodríguez, G. P. (2018). Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 148, 93-103.
[15]. Çantı, E., & Aydın, M. (2018). Effects of micro particle reinforcement on mechanical properties of 3D printed parts. Rapid Prototyping Journal, (24), 171-176. https://doi. org/10.1108/RPJ-06-2016-0095
[16]. Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., ... & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39(4), 661-687.
[17]. Chu, W. S., Kim, C. S., Lee, H. T., Choi, J. O., Park, J. I., Song, J. H., ... & Ahn, S. H. (2014). Hybrid manufacturing in micro/nano scale: A Review. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 75-92.
[18]. Chua, C. K., Leong, K. F., & An, J. (2020). Introduction to rapid prototyping of biomaterials. In N. Roger (Eds), Rapid prototyping of bio-materials (pp. 1-15). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-102663-2.0 0001-0
[19]. Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C., & Mikos, A. G. (2003). Use of stereo lithography to manufacture critical-sized 3d biodegradable scaffolds for bone ingrowth. Wiley Periodicals, 64(2), 65-69.
[20]. Cooley, W. G. (2005). Application of functionally graded materials in aircraft (Master Thesis). AirForce Institute of Technology, Ohio.
[21]. Cooper, D., Thornby, J., Blundell, N., Henrys, R., Williams, M. A., & Gibbons, G. (2015). Design and manufacture of high performance hollow engine valves by additive layer manufacturing. Materials & Design, 69, 44- 55.
[22]. Cotteleer, M., Neier, M., & Crane, J. (2014). 3D opportunity in tooling: Additive manufacturing shapes the future. Deloitte University Press.
[23]. Do, A. V., Khorsand, B., Geary, S. M., & Salem, A. K. (2015). 3D printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials, 4(12), 1742- 1762. https://doi.org/10.1002/adhm.201500168
[24]. Domínguez-Rodríguez, G., Ku-Herrera, J. J., & Hernández-Pérez, A. (2018). An assessment of the effect of printing orientation, density, and filler pattern on the compressive performance of 3D printed ABS structures by fuse deposition. The International Journal of Advanced Manufacturing Technology, 95(5-8), 1685-1695. https:// doi.org/10.1007/s00170-017-1314-x
[25]. Dwivedi, G., Srivastava, S. K., & Srivastava, R. K. (2017). Analysis of barriers to implement additive manufacturing technology in the Indian automotive sector. International Journal of Physical Distribution & Logistics Management, 47(10), 972-991.
[26]. Facchini, L., Magalini, E., Robotti, P., Molinari, A., Höges, S., & Wissenbach, K. (2010). Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping Journal, 16(6), 450-459. https://doi.org/10.1108/13552541011083371
[27]. Fantino, E., Chiappone, A., Calignano, F., Fontana, M., Pirri, F., & Roppolo, I. (2016). In situ thermal generation of silver nanoparticles in 3D printed polymeric structures. Materials, 9(7), 589-593. https://doi.org/10.3390/ma9070 589
[28]. Feygin, M., Shkolnik, A., Diamond, M. N., & Dvorskiy, E. (1998). U.S. Patent No. 5,730,817. Washington, DC: U.S. Patent and Trademark Office.
[29]. Fotovvati, B., Namdari, N., & Dehghanghadikolaei, A. (2018a). Fatigue performance of selective laser melted Ti6Al4V components: State of the art. Materials Research Express, 6(1), 012002.
[30]. Fotovvati, B., Namdari, N., & Dehghanghadikolaei, A. (2019). On coating techniques for surface protection: A review. Journal of Manufacturing and Material Processing, 3(1), 28.
[31]. Fotovvati, B., Wayne, S. F., Lewis, G., & Asadi, E. (2018b). A review on melt-pool characteristics in laser welding of metals. Advances in Materials Science and Engineering, 1–18.
[32]. Frazier, W. E. (2010, August). Direct digital manufacturing of metallic components: vision and st roadmap. In 21 Annual International Solid Freeform Fabrication Symposium (pp. 9-11).
[33]. Gaget, L. (2018). 3D printed clothes: Top 7 of the best projects [Blog Post]. Retrieved from https://www.sculpteo. com/blog/2018/05/23/3d-printed-clothes-top-7-of-thebest- projects/
[34]. Gausemeier, J., Echterhoff, N., Kokoschka, M., & Wall, M. (2011). Thinking ahead the future of additive manufacturing - Analysis of promising industries. Germany: Direct Manufacturing Research Center.
[35]. Gibson, I., Rosen, D. W., & Stucker, B. (2014). Additive manufacturing technologies (Vol. 17). New York: Springer.
[36]. Gokuldoss, P. K., Kolla, S., & Eckert, J. (2017). Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting - Selection guidelines. Materials, 10(6), 672-684. https://doi.org/10.3390/ma 10060672
[37]. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7), 3240-3253.
[38]. Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 151, 292-299.
[39]. Haller, B. (2015). NASA's vision for potential energy reduction from future generations of propulsion technology. [PPT]. Retrieved from https://pdfs.semantic scholar.org/019e/64e9d80b7f0ffa64c0c192c64b2bed14 822e.pdf
[40]. Hwang, S., Reyes, E. I., Moon, K. S., Rumpf, R. C., & Kim, N. S. (2015). Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. Journal of Electronic Materials, 44(3), 771- 777. https://doi.org/10.1007/s11664-014-3425-6
[41]. ISO/ASTM. (2015). Additive manufacturing — General principles — Terminology (ISO/ASTM 52900:2015(E)). ISO/ASTM International, Switzerland.
[42]. Jain, P. K., Pandey, P. M., & Rao, P. V. M. (2010). Selective laser sintering of clay-reinforced polyamide. Polymer Composites, 31(4), 732-743. https://doi.org/10.10 02/pc.20854.
[43]. Javaid, M., & Haleem, A. (2019). Using additive manufacturing applications for design and development of food and agricultural equipments. International Journal of Materials and Product Technology, 58(2-3), 225-238.
[44]. Jiménez, M., Romero, L., Domínguez, I. A., Espinosa, M. D. M., & Domínguez, M. (2019). Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity, 2, 1–30. https://doi.org/10.1 155/2019/9656938
[45]. Kelly, S. M., & Kampe, S. L. (2004). Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization. Metallurgical and Materials Transactions A, 35(6), 1861-1867. https://doi.org/ 10.1007/s11661-004-0094-8
[46]. Kim, H. C., Saotome, T., Hahn, H. T., Bang, Y. G., & Bae, S. W. (2007, August). Development of nanocomposite powders for the SLS process to enhance mechanical properties. In 2007, International Solid Freeform Fabrication Symposium.
[47]. Kim, K., Zhu, W., Qu, X., Aaronson, C., McCall, W. R., Chen, S., & Sirbuly, D. J. (2014). 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano, 8(10), 9799-9806.
[48]. King, W. E., Anderson, A. T., Ferencz, R. M., Hodge, N. E., Kamath, C., Khairallah, S. A., & Rubenchik, A. M. (2015). Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2(4), 1-26. https://doi.org/10.10 63/1.4937809
[49]. Kohtala, C. (2015). Addressing sustainability in research on distributed production: an integrated literature review. Journal of Cleaner Production, 106, 654-668. https://doi.org/10.1016/j.jclepro.2014.09.039
[50]. Kumar, S., Kumar, M., & Handa, A. (2018). Combating hot corrosion of boiler tubes: A study. Engineering Failure Analysis, 94, 379-395. https://doi.org/10.1016/j.engfailan al.2018.08.004
[51]. Lewandowski, J. J., & Seifi, M. (2016). Metal additive manufacturing: A review of mechanical properties. Annual Review of Materials Research, 46(1), 151-186.
[52]. Li, J. P., Li, S. H., Van Blitterswijk, C. A., & De Groot, K. (2005). A novel porous Ti6Al4V: Characterization and cell attachment. Journal of Biomedical Materials Research Part A, 73A(2), 223-233. https://doi.org/10.1002/jbm.a.30 278
[53]. Li, X., Feng, Y. F., Wang, C. T., Li, G. C., Lei, W., Zhang, Z. Y., & Wang, L. (2012). Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. Plos One, 7(12). https://doi.org/ 10.1371/journal.pone.0052049
[54]. Li, Z., Zhou, W., Yang, L., Chen, P., Yan, C., Cai, C., ... & Shi, Y. (2019). Glass fiber-reinforced phenol formaldehyde resin-based electrical insulating composites fabricated by selective laser sintering. Polymers, 11(1), 111-135.
[55]. Lin, D., Jin, S., Zhang, F., Wang, C., Wang, Y., Zhou, C., & Cheng, G. J. (2015). 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology, 26(43). https://doi.org/10.1088/0957-44 84/26/43/434003
[56]. Liu, L., Meng, Y., Dai, X., Chen, K., & Zhu, Y. (2019). 3D printing complex egg white protein objects: Properties and optimization. Food and Bio-process Technology, 12(2), 267-279. https://doi.org/10.1007/s11947-018-2209-z
[57]. Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., & Yan, C. (2019). A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. The International Journal of Advanced Manufacturing Technology, 102(9-12), 2877-2889. https://doi.org/10.100 7/s00170-019-0332-x
[58]. Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83-94. https:// doi.org/10.1016/j.tifs.2017.08.018
[59]. Lu, J., Lu, H., Xu, X., Yao, J., Cai, J., & Luo, K. (2020). High-performance integrated additive manufacturing with laser shock peening–induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components. International Journal of Machine Tools and Manufacture, 148, 1-27. https://doi.org/10.1016/j.ijmach tools.2019.10347
[60]. Lütjering, G. (1998). Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys. Materials Science and Engineering: A, 243(1-2), 32-45. https://doi.org/10.1016/s0921-5093(97)00 778-8
[61]. Mami, F., Revéret, J. P., Fallaha, S., & Margni, M. (2017). Evaluating eco-efficiency of 3D printing in the aeronautic industry. Journal of Industrial Ecology, 21(S1), S37-S48. https://onlinelibrary.wiley.com/doi/full/10.1111/ jiec.12693
[62]. Masood, S. H. (2014). Advances in fused deposition modeling. Elsevier.
[63]. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T. K., Asahara, H., Horiguchi, K., ... & Hirano, Y. (2016). Threedimensional printing of continuous-fiber composites by innozzle impregnation. Scientific Reports, 6, 23058 https:// doi.org/10.1038/srep23058
[64]. McMillan, M. L., Jurg, M., Leary, M., & Brandt, M. (2017). Programmatic generation of computationally efficient lattice structures for additive manufacture. Rapid Prototyping Journal, 23(3), 486-494.
[65]. Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The potential of additive manufacturing in the smart factory industrial 4.0: A review. Applied Sciences, 9(18), 3865- 3899. https://doi.org/10.3390/app9183865
[66]. Minetola, P., & Iuliano, L. (2014). The reverse guillotine tribometer for evaluation of sliding wear of additive manufactured fixtures. Rapid Prototyping Journal, 20(2), 105-114.
[67]. Miyanaji, H., Zhang, S., & Yang, L. (2018). A new physicsbased model for equilibrium saturation determination in binder jetting additive manufacturing process. International Journal of Machine Tools and Manufacture, 124, 1-11.
[68]. Mostafaei, A., De Vecchis, P. R., Stevens, E. L., & Chmielus, M. (2018). Sintering regimes and resulting microstructure and properties of binder jet 3D printed Ni- Mn-Ga magnetic shape memory alloys. Acta Materialia, 154, 355-364.
[69]. Murr, L. E., Esquivel, E. V., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Martinez, E. Y., ... & Wicker, R. B. (2009). Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Materials Characterization, 60(2), 96-105.
[70]. Namiki, M., Ueda, M., Todoroki, Hirano, Y., & Matsuzaki. (2014). 3D printing of continuous fiber reinforced plastic. In SAMPE Seattle 2014 International Conference and Exhibition (International SAMPE Technical Conference).
[71]. Ning, F., Cong, W., Hu, Z., & Huang, K. (2017). Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: A comparison of two reinforcements. Journal of Composite Materials, 51(27), 3733-3742. https://doi.org/10.1177/0021998317692659
[72]. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S. (2015). Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 80, 369-378.
[73]. Onuike, B., Heer, B., & Bandyopadhyay, A. (2018). Additive manufacturing of Inconel 718—Copper alloy bimetallic structure using laser engineered net shaping (LENS™). Additive Manufacturing, 21, 133-140.
[74]. Paolini, A., Kollmannsberger, S., & Rank, E. (2019). Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Additive Manufacturing, 30, 100894. https://doi.org/10. 1016/j.addma.2019.100894
[75]. Parthasarathy, J., Starly, B., & Raman, S. (2011). A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, 13(2), 160-170.
[76]. Perez, A. R. T., Roberson, D. A., & Wicker, R. B. (2014). Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. Journal of Failure Analysis and Prevention, 14(3), 343-353.
[77]. Pessoa, S., & Guimarães, A. S. (2020). The 3D printing challenge in buildings. In E3S Web of Conferences (Vol. 172, p. 19005). EDP Sciences. https://doi.org/10.1007/978- 3-662-44745-1_36
[78]. Rapid Park, J., Tari, M. J., & Hahn, H. T. (2000). Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal, 6, 36–50.
[79]. Rymansaib, Z., Iravani, P., Emslie, E., Medvidović- Kosanović, M., Sak-Bosnar, M., Verdejo, R., & Marken, F. (2016). All-polystyrene 3D-printed electrochemical device with embedded carbon nanofiber-graphite-polystyrene composite conductor. Electro Analysis, 28(7), 1517-1523.
[80].Sachlos, E., & Czernuszka, J. T. (2003). Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials Journal, 5(29), 39-40.
[81]. Sakin, M., & Kiroglu, Y. C. (2017). 3D printing of buildings: Construction of the sustainable houses of the future by BIM. Energy Procedia, 134, 702-711.
[82]. Salmi, M., Paloheimo, K. S., Tuomi, J., Wolff, J., & Mäkitie, A. (2013). Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery, 41(7), 603-609.
[83]. Salmoria, G. V., Klauss, P., Paggi, R. A., Kanis, L. A., & Lago, A. (2009). Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polymer Testing, 28(6), 648-652. https://doi.org/ 10.1016/j.polymertesting.2009.05.008
[84]. Sandoval, J. H., & Wicker, R. B. (2006). Functionalizing stereolithography resins: effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyping Journal, 12(5), 292-303.
[85]. Sano, Y., Matsuzaki, R., Ueda, M., Todoroki, A., & Hirano, Y. (2018). 3D printing of discontinuous and continuous fibre composites using stereolithography. Additive Manufacturing, 24, 521-527.
[86]. Sathishkumar, T. P., Naveen, J. A., & Satheeshkumar, S. (2014). Hybrid fiber reinforced polymer composites: A review. Journal of Reinforced Plastics and Composites, 33(5), 454-471. https://doi.org/10.1177%2F07316844135 16393
[87]. Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
[88]. Shim, D. S., Baek, G. Y., Seo, J. S., Shin, G. Y., Kim, K. P., & Lee, K. Y. (2016). Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Optics & Laser Technology, 86, 69-78.
[89]. Shishkovsky, I., Missemer, F., & Smurov, I. (2018). Metal matrix composites with ternary intermetallic inclusions fabricated by laser direct energy deposition. Composite Structures, 183, 663-670.
[90]. Shofner, M. L., Lozano, K., Rodríguez-Macías, F. J., & Barrera, E. V. (2003). Nanofiber-reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science, 89(11), 3081-3090.
[91]. Sing, S. L., Tey, C. F., Tan, J. H. K., Huang, S., & Yeong, W. Y. (2020). 3D printing of metals in rapid prototyping of biomaterials: Techniques in additive manufacturing. Rapid Prototyping of Biomaterials, (pp. 17–40). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-102663-2.0 0002-2
[92]. Soe, S. P., Eyers, D. R., Jones, T., & Nayling, N. (2012). Additive manufacturing for archaeological reconstruction of a medieval ship. Rapid Prototyping Journal, 18(6), 443- 450.
[93]. Sreehitha, V. (2017). Impact of 3d printing in automotive industries. International Journal of Mechanical and Production Engineering, 5(2), 91-94.
[94]. Strong, D., Sirichakwal, I., Manogharan, G. P., & Wakefield, T. (2017). Current state and potential of additive-hybrid manufacturing for metal parts. Rapid Prototyping Journal, 23(3), 577-588.
[95]. Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., ... & Matsuda, S. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Materials Science and Engineering: C, 59, 690-701. https://doi.org/10.1016/j.msec.2015.10.069
[96]. Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., & Leong, K. F. (2017). 3D printing trends in building and construction industry: A review. Virtual and Physical Prototyping, 12(3), 261-276. https://doi.org/10.10 80/17452759.2017.1326724
[97]. Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., ... & Ozcan, S. (2014). Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology, 105, 144-150.
[98]. Thomsen, P., Malmström, J., Emanuelsson, L., Rene, M., & Snis, A. (2009). Electron beam-melted, free-formfabricated titanium alloy implants: Material surface characterization and early bone response in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90(1), 35-44.
[99]. Tibbits, S., McKnelly, C., Olguin, C., Dikovsky, D., & Hirsch, S. (2014). 4D printing and universal transformation, th In Proceedings of the 34 Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA). (pp-539-548).
[100]. Tolosa, I., Garciandía, F., Zubiri, F., Zapirain, F., & Esnaola, A. (2010). Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. The International Journal of Advanced Manufacturing Technology, 51(5), 639-647.
[101]. Trivedi, G. (2014). 5 potential future applications of 3D printing within the aerospace industry. Retrieved from https://3dprint.com/26081/3d-printing-aerospace-5-uses/
[102]. Tsang, V. L., & Bhatia, S. N. (2004). Three-dimensional tissue fabrication. Advanced Drug Delivery Reviews, 56(11), 1635-1647.
[103]. Tukuru, N., Gowda, K. P., Ahmed, S. M., & Badami, S. (2008). Rapid prototype technique in medical field. Research Journal of Pharmacy and Technology, 1(4), 341- 344.
[104]. Tuomi, J., Paloheimo, K. S., Vehviläinen, J., Björkstrand, R., Salmi, M., Huotilainen, E., ... & Mäkitie, A. A. (2014). A novel classification and online platform for planning and documentation of medical applications of additive manufacturing. Surgical Innovation, 21(6), 553- 559. https://doi.org/10.1177%2F1553350614524838
[105]. Turner, B. N., & Gold, S. A. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21(3), 250-261.
[106]. Uhlmann, E., Kersting, R., Klein, T. B., Cruz, M. F., & Borille, A. V. (2015). Additive manufacturing of titanium alloy for aircraft components. Procedia Cirp, 35, 55-60. https://doi.org/10.1016/j.procir.2015.08.061
[107]. Vaughan, M. R., & Crawford, R. H. (2013). Effectiveness of virtual models in design for additive manufacturing: A laser sintering case study. Rapid Prototyping Journal, 19(1), 11-19.
[108]. Ventola, C. L. (2014). Medical applications for 3D printing: Current and projected uses. Pharmacy and Therapeutics, 39(10), 704-710.
[109]. Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442-458.
[110]. Wang, X., Schmidt, F., Hanaor, D., Kamm, P. H., Li, S., & Gurlo, A. (2019). Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiolene click chemistry. Additive Manufacturing, 27, 80-90.
[111]. Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z., & Sun, Z. (2015). 3D printable graphene composite. Scientific Reports, 5, 11181. https://doi.org/10.1038/srep1 1181
[112]. Wen, Y., Xun, S., Haoye, M., Baichuan, S., Peng, C., Xuejian, L., ... & Shibi, L. (2017). 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomaterials Science, 5(9), 1690-1698. https://doi.org/10. 1039/C7BM00315C
[113]. Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nano composites for fused deposition modeling 3D printing. Materials & Design, 102, 276-283.
[114]. Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., Feinberg, S. E., ... & Das, S. (2005). Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26(23), 4817-4827. https://doi.org/10.1016/j. biomaterials.2004.11.057
[115]. Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering, 1, 1-10.
[116]. Yang, C., Tian, X., Liu, T., Cao, Y., & Li, D. (2017). 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance. Rapid Prototyping Journal, 23, 209–215.
[117]. Yugang, D., Yuan, Z., Yiping, T., & Dichen, L. (2011). Nano-TiO -modified photosensitive resin for RP. Rapid 2 Prototyping Journal, 17(4), 247-252.
[118]. Zhang, Y. I. (2018). Additive Manufacturing. Additive Manufacturing Processes and Equipment, 1, 39–51. https://doi.org/10.1016/B978-0-12-812155-9.00002-5
[119]. Zhang, Y., Li, H., Yang, X., Zhang, T., Zhu, K., Si, W., ... & Sun, H. (2018). Additive manufacturing of carbon nanotube-photopolymer composite radar absorbing materials. Polymer Composites, 39(S2), E671-E676. https:// doi.org/10.1002/pc.24117.
[120]. Zheng, H., Zhang, J., Lu, S., Wang, G., & Xu, Z. (2006). Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/ polystyrene composite prepared by SLS. Materials Letters, 60(9-10), 1219-1223.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.