References
[1]. Abe, S. (2005). Support vector machines for pattern
classification (Vol. 2, p. 44). London: Springer.
[2]. Bevrani, H. (2009). Robust power system frequency
control. New York: Springer.
[3]. Bevrani, H., & Hiyama, T. (2011). Intelligent automatic
generation control. Taylor & Francis Group.
[4]. Boonprasert, U., Rakpenthai, C., Theera-Umpon, N. A.
(2002). Comparison of support vector machines and back
propagation neural networks in adaptive power system
th stabilizer. In Proceedings of the 25 Electrical Engineering
Conference, PW278-282, Prince of Songkla University,
Thailand.
[5]. Boonprasert, U., Theera-Umpon, N., & Rakpenthai, C.
(2003, May). Support vector regression based adaptive
power system stabilizer. In Proceedings of the 2003
International Symposium on Circuits and Systems, 2003.
ISCAS'03. (Vol. 3, pp. III-III). IEEE. https://doi.org/10.1109/
ISCAS.2003.1205033
[6]. Cortes, C., & Vapnik, V. (1995). Support-vector
networks. Machine Learning, 20(3), 273-297.
[7]. Hunter, R., & Elliot, G. (Eds.). (1994). Wind-diesel
systems: A guide to the technology and its implementation.
Cambridge University Press.
[8]. Liu, J., Zhao, Z., Tang, C., Yao, C., Li, C., & Islam, S.
(2019). Classifying transformer winding deformation fault
types and degrees using FRA based on support vector
machine. IEEE Access, 7, 112494-112504.
[9]. Li, X., Wu, S., Li, X., Yuan, H., & Zhao, D. (2020). Particle
Swarm Optimization-Support Vector Machine Model for
Machinery Fault Diagnoses in High-Voltage Circuit Breakers.
Chinese Journal of Mechanical Engineering, 33(1), 1-10.
https://doi.org/10.1186/s10033-019-0428-5
[10]. Padmaja, A., & Sudha, K. R. (2017). Power system load
frequency regulation using Monte-Carlo parameter
estimation based support vector machine. Majlesi Journal
of Energy Management, 6(4), 1-14.
[11]. Santhi, R. V., & Sudha, K. (2014). A robust decentralized controller for stand-alone wind systems and
hybrid wind-diesel systems using type-2 fuzzy approach.
International Journal of Signal Processing Systems, 2(1), 48-
54.
[12]. Shayeghi, H. A. S. H., Shayanfar, H. A., & Jalili, A.
(2009). Load frequency control strategies: A state-of-the-art
survey for the researcher. Energy Conversion and
Management, 50(2), 344-353. https://doi.org/10.1016/j.
enconman.2008.09.014
[13]. Sudha, K. R., Raju, Y. B., & Reddy, P. P. (2010). Adaptive
power system stabilizer using support vector machine.
International Journal of Encineerinc Science and
Technology, 2(3), 442-447.
[14]. Supriyadi, C.A.N., Hashiguchi, T., Goda, T., & Tumiran.
(2011). Control Scheme of Hybrid Wind-Diesel Power
Generation System. In From Turbine to Wind Farms -
Technical Requirements and Spin-Off Products.
IntechOpen. https://doi.org/10.5772/15152
[15]. Vapnik, V. (2013). The nature of statistical learning
theory. Springer Science & Business Media.
[16]. Yang, A., Li, W., & Yang, X. (2019). Short-term electricity
load forecasting based on feature selection and least
squares support vector machines. Knowledge-Based
Systems, 163, 159-173.