References
[1]. AbdElhafez, A. A., Alruways, S. H., Alsaif, Y. A., Althobaiti, M. F., Alotaibi, A. B., & Alotaibi, N. A. (2017). Reactive power problem and solutions: An overview. Journal of Power and Energy Engineering, 5(5), 40-54. https://doi.org/10.4236/ jpee.2017.55004
[2]. Aissaoui, A. G., Tahour, A., Abid, M., Essounbouli, N., & Nollet, F. (2013, October). Using neuro fuzzy PI techniques in wind turbine control. In 2013, International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 605-610). IEEE. https://doi.org/10.1109/ICRERA.2013. 6749827
[3]. Aldair, A. A., Rashid, M. T., Halihal, A. F., & Mokayef, M. (2019). Design of pitch angle controller for wind turbine based on PI neurofuzzy model. Indonesian Journal of Electrical Engineering and Computer Science, 15(3), 1664- 1670. https://doi.org/10.11591/ijeecs
[4]. Al-Saffar, M., & Musilek, P. (2016, May). Fuzzy logic controller for large, grid-integrated wind farm under variable wind speeds. In 2016 17th International Scientific Conference on Electric Power Engineering (EPE) (pp. 1-6). IEEE. https://doi.org/10.1109/EPE.2016.7521767
[5]. Amin, I. K., Uddin, M. N., & Marsadek, M. (2019, May). ANFIS based neuro-fuzzy control of DFIG for wind power generation in standalone mode. In 2019, IEEE International Electric Machines & Drives Conference (IEMDC) (pp. 2077- 2082). IEEE. https://doi.org/10.1109/IEMDC.2019.8785334
[6]. Arif, E. M. H., Hossen, J., Ramana, G., Bhuvaneswari, T., Velrajkumar, P., & Venkataseshaiah, C. (2018). A survey on neuro-fuzzy controllers for solar panel tracking systems. Far East Journal of Electronics and Communications, 18(7), 981-1003.
[7]. Ghiasvand, O., & Ghiasvand, A. (2011, October). Wind speed short term forecast by neuro fuzzy modeling with aid of mutual information at Manjil Wind Power Plant. In 2011, 1st International eConference on Computer and Knowledge Engineering (ICCKE) (pp. 1-5). IEEE. https://doi.org/10.11 09/ICCKE.2011.6413314
[8]. Jassbi, J. J., Serra, P. J., Ribeiro, R. A., & Donati, A. (2006, July). A comparison of mandani and sugeno inference systems for a space fault detection application. In 2006, World Automation Congress (pp. 1-8). IEEE. https://doi.org/ 10.1109/WAC.2006.376033
[9]. KangaraniFarahani, M., & Mehralian, S. (2013, August). Comparison between artificial neural network and neuro-fuzzy for gold price prediction. In 2013, 13th Iranian Conference on Fuzzy Systems (IFSC) (pp. 1-5). IEEE. https:// doi.org/10.1109/IFSC.2013.6675635
[10]. Mughal, M. H., & Guojie, L. (2015, August). Review of pitch control for variable speed wind turbine. In 2015, IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and th 2015 IEEE 15 Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATCScalCom) (pp. 738-744). IEEE. https:// doi.org/10.1109/UICATC- ScalCom-CBDCom-IoP2015.148
[11]. Muneer, A., & Kadri, M. B. (2013, October). Pitch angle control of DFIG using self tuning neuro fuzzy controller. In 2013, International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 316-320). IEEE. https://doi.org/10.1109/ICRERA.2013.6749772
[12]. Nauck, D. D., & Nürnberger, A. (2013). Neuro-fuzzy systems: A short historical review. In Computational Intelligence in Intelligent Data Analysis (pp. 91-109). Heidelberg, Berlin: Springer. https://doi.org/10.1007/978-3- 642-32378-2_7
[13]. Navarrete, E. C., Perea, M. T., Correa, J. J., Serrano, R. C., & Moreno, G. R. (2019). Expert control systems implemented in a pitch control of wind turbine: A review. IEEE Access, 7, 13241-13259. https://doi.org/10.1109/ACC ESS.2019.2892728
[14]. Parikh, A. (2019). Over 12 GW of Wind Capacity Awarded as of October 2019: MNRE. Mercom India. Retrieved from https://mercomindia.com/wind-capacityawarded- october-mnre/
[15]. Rajendran, S., & Jena, D. (2014). Control of variable speed variable pitch wind turbine at above and below rated wind speed. Journal of Wind Energy, 1-14. https://doi.org/10.1155/2014/709128
[16]. Ranga, K., Sukumar, G., Pakkiraiah, B., & Rao, M.S. (2016). Neuro fuzzy based PS & QS controller for doubly fed induction generator with wind turbine. In 2016, International Conference on Electrical Power and Energy Systems (ICEPES) (pp. 139-144). https://doi.org/10.1109/ ICEPES.2016.7915920
[17]. Schubel, P. J., & Crossley, R. J. (2012). Wind turbine blade design review. Wind Engineering, 36(4), 365-388. https://doi.org/10.1260/0309-524X.36.4.365
[18]. Son, Y. S., Kim, H. J., & Kim, J. T. (2018). ANFIS-based rate adaptation scheme for adaptive streaming over HTTP. EURASIP Journal on Wireless Communications and Networking, 2018(1), 261. https://doi.org/10.1186/s13638- 018-1279-y
[19]. Subhedar, M., & Birajdar, G. (2013). Comparison of mamdani and sugeno inference systems for dynamic spectrum allocation in cognitive radio networks. Wireless Personal Communications, 71(2), 805-819. https://doi.org/ 10.1007/s11277-012-0845-6
[20]. Topaloğlu, F., & Pehlıvan, H. (2018, March). Comparison of Mamdani type and Sugeno type fuzzy inference systems in wind power plant installations. In 2018, 6th International Symposium on Digital Forensic and Security (ISDFS) (pp. 1-4). IEEE. https://doi.org/10.1109/ISD FS.2018.8355384
[21]. Veeramani, C., & Mohan, G. (2013). A fuzzy based pitch angle control for variable speed wind turbines. International Journal of Engineering and Technology (IJET), 5(2), 1699-1703.
[22]. Vieira, J., Dias, F. M., & Mota, A. (2004, March). Neuro fuzzy systems: A survey. In 5th WSEAS NNA International Conference on Neural Networks and Applications (pp. 87- 92).