References
[1]. Ahmed, H. M. (2014). Solutions of 2 -order linear differential equations subject to Dirichlet boundary conditions in a
Bernstein polynomial basis. Journal of the Egyptian Mathematical Society, 22(2), 227-237.
[2]. Babolian, E., Fattahzadeh, F. (2017). Numerical solution of differential equations by using Chebyshev wavelet
operational matrix of integration. Applied Mathematics and Computation, 188(1), 417-426. https://doi.org/10.1016/j.amc.2006.10.008.
[3]. Bernšteın, S. (1912). Démonstration du théoreme de Weierstrass fondée sur le calcul des probabilities. Communications
of the Kharkov Mathematical Society, 13, 1-2.
[4]. Bhatti, M. I., & Bracken, P. (2007). Solutions of differential equations in a Bernstein polynomial basis. Journal of
Computational and Applied Mathematics, 205(1), 272-280.
[5]. Bhatti, M. I., Coleman, K. D., & Perger, W. F. (2003). Static polarizabilities of hydrogen in the B-spline basis set. Physical
Review A, 68(4), 044503.
[6]. Bottcher, C., & Strayer, M. R. (1987). Relativistic theory of fermions and classical fields on a collocation lattice. Annals of
Physics, 175(1), 64-111.
[7]. Dadkhah, M., Farahi, M. H., & Heydari, A. (2018). Numerical solution of time delay optimal control problems by hybrid of
block-pulse functions and Bernstein polynomials. IMA Journal of Mathematical Control and Information, 35(2), 451-477.
[8]. Dascioglu, A. A., & Isler, N. (2013). Bernstein collocation method for solving nonlinear differential equations.
Mathematical and Computational Applications, 18(3), 293-300.
[9]. Davaeifar, S., & Rashidinia, J. (2017). Solution of a system of delay differential equations of multi pantograph type.
Journal of Taibah University for Science, 11(6), 1141-1157.
[10]. Farin, G. (1993). Curves and surfaces for computer aided geometric design (3 ed). Boston: Academic Press.
[11]. Hashim, I., & Alshbool, M. (2019). Solving directly third-order ODEs using operational matrices of Bernstein polynomials
method with applications to fluid flow equations. Journal of King Saud University-Science, 31(4), 822-826.
[12]. Hoschek, J., & Lasser, D. (1993). Fundamentals of computer aided geometric design. Wellesley, MA: A K Peters.
[13]. Javadi, S., Babolian, E., & Taheri, Z. (2016). Solving generalized pantograph equations by shifted orthonormal Bernstein
polynomials. Journal of Computational and Applied Mathematics, 303, 1-14.
[14]. Johnson, W. R., Blundell, S. A., & Sapirstein, J. (1988). Finite basis sets for the Dirac equation constructed from B splines.
Physical Review A, 37(2), 307.
[15]. Johnson, W. R., Idrees, M., & Sapirstein, J. (1987). Second-order energies and third-order matrix elements of alkalimetal
atoms. Physical Review A, 35(8), 3218.
[16]. Jiittler, B. (1998). The dual basis functions for the Bernstein polynomials. Advances in Computational Mathematics, 8(4),
345-352.
[17]. Lorentz, G. G. (1953). Bernstein Polynomials. Toronto, Canada: University of Toronto Press.
[18]. Meštrović, M. (2007). The modified decomposition method for eighth-order boundary value problems. Applied Mathematics and Computation, 188(2), 1437-1444.
[19]. Pandey, R. K., & Kumar, N. (2012). Solution of Lane–Emden type equations using Bernstein operational matrix of
differentiation. New Astronomy, 17(3), 303-308.
[20]. Qiu, Y., & Fischer, C. F. (1999). Integration by cell algorithm for Slater integrals in a spline basis. Journal of Computational
Physics, 156(2), 257-271.
[21]. Razzaghi, M., & Yousefi, S. (2000). Legendre wavelets direct method for variational problems. Mathematics and
Computers in Simulation, 53(3), 185-192.
[22]. Tohidi, E., Erfani, K., Gachpazan, M., & Shateyi, S. (2013). A new Tau method for solving nonlinear Lane-Emden type
equations via Bernoulli operational matrix of differentiation. Journal of Applied Mathematics, 2013, 9. https://doi.org/10.
1155/2013/850170
[23]. Wolfram (2004). Mathematica (Version 5.1). Champaign, Illinois: Wolfram Research Inc.
[24]. Yüzbaşı, Ş. (2016). A collocation method based on Bernstein polynomials to solve nonlinear Fredholm–Volterra integrodifferential
equations. Applied Mathematics and Computation, 273, 142-154.