References
[1]. Aamri, M., & El Moutawakil, D. (2002). Some new common fixed point theorems under strict contractive conditions.
Journal of Mathematical Analysis and Applications, 270(1), 181-188.
[2]. Ali, J., Imdad, M., & Bahuguna, D. (2010). Common fixed point theorems in Menger spaces with common property (EA).
Computers & Mathematics with Applications, 60(12), 3152-3159. https://doi.org/10.1016/j.camwa.2010.10.020
[3]. Baskaran, R., & Subrahmanyam, P. (1986). A note on the solution of a class of functional equations. Applicable Analysis,
22(3-4), 235-241.
[4]. Bellman, R. (1957). Dynamic programming. Princeton, New Jersey: Princeton University Press.
[5]. Bellman, R., & Lee, E. S. (1978). Functional equations in dynamic programming. Aequationes Mathematicae, 17(1), 1-18.
[6]. Bhakta, P. C., & Mitra, S. (1984). Some existence theorems for functional equations arising in dynamic programming.
Journal of Mathematical Analysis and Applications, 98(2), 348-362.
[7]. Chang, S. S., & Ma, Y. H. (1991). Coupled fixed points for mixed monotone condensing operators and an existence
theorem of the solutions for a class of functional equations arising in dynamic programming. Journal of Mathematical
Analysis and Applications, 160(2), 468-479.
[8]. Chen, S., Shi, P., & Lim, C. C. (2017). Curve arc length in fuzzy metric spaces. Fuzzy Sets and Systems, 313, 105-113.
[9]. García, J. G., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy
Sets and Systems, 330, 52-78.
[10]. George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399.
[11]. Gregori, V., & Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), 245-
252.
[12]. Gregori, V., Miñana, J. J., & Miravet, D. (2020). Contractive sequences in fuzzy metric spaces. Fuzzy Sets and Systems,
379, 125-133.
[13]. Imdad, M., Pant, B., & Chauhan, S. (2012). Fixed point theorems in menger spaces using the CLRST property and
applications. Journal of Nonlinear Analysis and Optimization: Theory & Applications, 3(2), 225-237.
[14]. Jungck, G. (1986). Compatible mappings and common fixed points. International Journal of Mathematics and
Mathematical Sciences, 9, 771-779.
[15]. Jungck, G. (1976). Commuting mappings and fixed points. The American Mathematical Monthly, 83, 261-263.
[16]. Jungck, G., & Rhoades, B. E. (2006). Fixed point Theorems for occasionally weakly compatible mappings. Fixed Point
Theory, 7, 286-296.
[17]. Kramosil, I., & Michálek, J. (1975). Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), 336-344.
[18]. Miheţ, D. (2010). Fixed point theorems in fuzzy metric spaces using property EA. Nonlinear Analysis: Theory, Methods &
Applications, 73(7), 2184-2188.
[19]. Pant, R. P. (1994). Common fixed points of non-commuting mappings. Journal of Mathematical Analysis and
Applications, 188, 436-440.
[20]. Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334.
[21]. Sessa, S. (1982). On a weak commutativity condition of mappings in fixed point considerations. Publications de l'Institut
Mathématique, 32(46), 149-153.
[22]. Sintunavarat, W., & Kumam, P. (2011). Common fixed point theorems for a pair of weakly compatible mappings in fuzzy
metric spaces. Journal of Applied Mathematics. https://doi.org/10.1155/2011/637958
[23]. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
[24]. Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128.