References
[1]. Alonso, M., Gonzalez, A., De Saja, J. A., & Escalona, A.
M. (1991). Quality control of mineral impurities in industrial
talcs by thermogravimetric analysis. Thermochimica Acta,
184(1), 125-130. https://doi.org/10.1016/0040-6031(91)80
143-7
[2]. Artiaga, R., Naya, S., Garcia, A., Barbadillo, F., &
García, L. (2005). Subtracting the water effect from DSC
curves by using simultaneous TGA data. Thermochimica
Acta, 428(1-2), 137-139. https://doi.org/10.1016/j.tca.20
04.11.016
[3]. Božanić, D. K., Djoković, V., Blanuša, J., Nair, P. S.,
Georges, M. K., & Radhakrishnan, T. (2007). Preparation
and properties of nano-sized Ag and Ag 2 S particles in
biopolymer matrix. The European Physical Journal E, 22(1),
51-59. https://doi.org/10.1140/epje/e2007-00008-y
[4]. Broido, A. (1969). A simple, sensitive graphical method
of treating thermogravimetric analysis data. Journal of
Polymer Science Part A-2: Polymer Physics, 7(10), 1761-
1773. https://doi.org/10.1002/pol.1969.160071012
[5]. Chong, C. T., Mong, G. R., Ng, J. H., Chong, W. W. F.,
Ani, F. N., Lam, S. S., & Ong, H. C. (2019). Pyrolysis
characteristics and kinetic studies of horse manure using
thermogravimetric analysis. Energy Conversion and
Management, 180, 1260-1267. https://doi.org/10.1016/j.
enconman.2018.11.071
[6]. Ciullo, P. A. (1996). Industrial minerals and their uses: A
handbook and formulary. William Andrew.
[7]. Dollimore, D., Tong, P., & Alexander, K. S. (1996). The
kinetic interpretation of the decomposition of calcium
carbonate by use of relationships other than the Arrhenius
equation. Thermochimica Acta, 282, 13-27. https://doi.org
/10.1016/0040-6031(95)02810-2
[8]. El-Sayed, S. A., & Mostafa, M. E. (2015). Kinetic
parameters determination of biomass pyrolysis fuels using
TGA and DTA techniques. Waste and Biomass Valorization, RESEARCH PAPERS
6(3), 401-415. https://doi.org/10.1007/s12649-015-9354-7
[9]. Guo, H., Qin, Z., Qian, P., Yu, P., Cui, S., & Wang, W.
(2011). Crystallization of aragonite CaCO with complex 3
structures. Advanced Powder Technology, 22(6), 777-783.
https://doi.org/10.1016/j.apt.2010.11.004
[10]. Horai, K. I., & Simmons, G. (1969). Thermal
conductivity of rock-forming minerals. Earth and Planetary
Science Letters, 6(5), 359-368.
[11]. Horváth, E., Frost, R. L., Makó, É., Kristóf, J., & Cseh, T.
(2003). Thermal treatment of mechanochemically
activated kaolinite. Thermochimica Acta, 404(1-2), 227-
234. https://doi.org/10.1016/S0040-6031(03)00184-9
[12]. Krupka, K. M., Hemingway, B. S., Robie, R. A., &
Kerrick, D. M. (1985). High-temperature heat capacities
and derived thermodynamic properties of anthophyllite,
diopside, dolomite, enstatite, bronzite, talc, tremolite and
wollastonite. American Mineralogist, 70(3-4), 261-271.
[13]. Leake, B. E. (1998). Rock-forming minerals.
Mineralogical Magazine, 62(1), 135-136. https://doi.org/
10.1180/minmag.1998.062.1.04
[14]. Li, Q., He, R., Gao, J. A., Jensen, J. O., & Bjerrum, N. J.
(2003). The CO poisoning effect in PEMFCs operational at
temperatures up to 200 °C. Journal of the Electrochemical
Society, 150(12). https://doi.org/10.1149/1.1619984
[15]. Li, X. G., Lv, Y., Ma, B. G., Wang, W. Q., & Jian, S. W.
(2017). Decomposition kinetic characteristics of calcium
carbonate containing organic acids by TGA. Arabian
Journal of Chemistry, 10, S2534-S2538. https://doi.org/10.
1016/j.arabjc.2013.09.026
[16]. Likos, W. J., Olson, H. S., & Jaafar, R. (2012).
Comparison of laboratory methods for measuring thermal
conductivity of unsaturated soils. In Geo Congress 2012:
State of the Art and Practice in Geotechnical Engineering
(pp. 4366-4375).
[17]. Macêdo, R. O., Aragao, C. F. S., Do Nascimento, T. G.,
& Macêdo, A. M. C. (1999). Application of thermogravimetry
in the quality control of chloramphenicol
tablets. Journal of Thermal Analysis and Calorimetry, 56(3),
1323-1327. https://doi.org/10.1023/A:1010102422381
[18]. Mathew, A. P., Packirisamy, S., & Thomas, S. (2001).
Studies on the thermal stability of natural rubber /
polystyrene interpenetrating polymer networks: Thermogravimetric
analysis. Polymer Degradation and Stability,
72(3), 423-439. https://doi.org/10.1016/S0141-3910(01)0
0042-8
[19]. Mazumdar, S., & Mukherjee, B. (1983). Structural
characterization of the spinel phase in the kaolin-mullite
reaction series through lattice energy. Journal of the
American Ceramic Society, 66(9), 610-612. https://doi.org
/10.1111/j.1151-2916.1983.tb10607.x
[20]. Murray, H. H. (2000). Traditional and new applications
for kaolin, smectite, and palygorskite: A general overview.
Applied Clay Science, 17(5-6), 207-221. https://doi.org/10.
1016/S0169-1317(00)00016-8
[21]. Pask, J. A., & Tomsia, A. P. (1991). Formation of mullite
from sol-gel mixtures and kaolinite. Journal of the American
Ceramic Society, 74(10), 2367-2373. https://doi.org/10.11
11/j.1151-2916.1991.tb06770.x
[22]. Peniche-Covas, C., Argüelles-Monal, W., & San
Román, J. (1993). A kinetic study of the thermal
degradation of chitosan and a mercaptan derivative of
chitosan. Polymer Degradation and Stability, 39(1), 21-28.
https://doi.org/10.1016/0141-3910(93)90120-8
[23]. Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J.,
Šoukal, F., & Opravil, T. (2010). The non-isothermal kinetic
analysis of the thermal decomposition of kaolinite by
thermogravimetric analysis. Powder Technology, 204(2-3),
222-227. https://doi.org/10.1016/j.powtec.2010.08.004
[24]. Sprynskyy, M., Kowalkowski, T., Tutu, H., Cukrowska, E.
M., & Buszewski, B. (2011). Adsorption performance of talc
for uranium removal from aqueous solution. Chemical
Engineering Journal, 171(3), 1185-1193. https://doi.org/
10.1016/j.cej.2011.05.022
[25]. Stout, J. W., & Robie, R. A. (1963). Heat capacity from
11 to 300 K, entropy, and heat of formation of dolomite. The
Journal of Physical Chemistry, 67(11), 2248-2252. https://
doi.org/10.1021/j100805a002
[26]. Sunitrová, I., & Trník, A. (2018, July). DSC and TGA of a
kaolin-based ceramics with zeolite addition during heating
up to 1100 °C. In AIP Conference Proceedings (Vol. 1988,
No. 1, p. 020046). AIP Publishing LLC. https://doi.org/10.
1063/1.5047640
[27]. Tavangarian, F., Emadi, R., & Shafyei, A. (2010).
Influence of mechanical activation and thermal treatment
time on nanoparticle forsterite formation mechanism.
Powder Technology, 198(3), 412-416. https://doi.org/10.
1016/j.powtec.2009.12.007
[28]. Traore, K., Kabre, T. S., & Blanchart, P. (2003).
Gehlenite and anorthite crystallization from kaolinite and
calcite mix. Ceramics International, 29(4), 377-383. https://
doi.org/10.1016/S0272-8842(02)00148-7
[29]. Trivedi, M. K., Tallapragada, R. M., Branton, A., Trivedi,
D., Nayak, G., Latiyal, O., ... & Jana, S. (2015).
Physicochemical characterization of biofield energy
treated calcium carbonate powder. American Journal of
Health Research, 3(6), 368-375.
[30]. Wesołowski, M. (1984). Thermal decomposition of
talc: A review. Thermochimica Acta, 78(1-3), 395-421.
https://doi.org/10.1016/0040-6031(84)87165-8
[31]. Willart, J. F., Carpentier, L., Danède, F., & Descamps,
M. (2012). Solid-state vitrification of crystalline griseofulvin
by mechanical milling. Journal of Pharmaceutical
Sciences, 101(4), 1570-1577. https://doi.org/10.1002/jps.
23041
[32]. Yang, N., Zhang, Z. C., Ma, N., Liu, H. L., Zhan, X. Q., Li,
B., ... & Chiang, T. C. (2017). Effect of surface modified
kaolin on properties of polypropylene grafted maleic
anhydride. Results in Physics, 7, 969-974. https://doi.org/10.
1016/j.rinp.2017.02.030