The Extensive Study of Thermal and Kinetic Behavior as Non Isothermal Degradation with the Help of TGA: Rajasthan Rocks Minerals

Chetan M. Patel *, Chirag D. Patel **
*-** Department of Physics, Faculty of Science, Sankalchand Patel University, Visnagar, Gujarat, India.
Periodicity:January - March'2021


The nature and content of rock minerals have a significant impact on the behavior and properties of rocks and the entire rock massif. The rock mineral such as calcite, china clay, talc and whiting in the form of rock specimen has been collected from various part of Rajasthan. The final materials in the form of powder in micrometer size were obtained using mechanical method. In the current paper, thermal behavior using TGA of all the rock minerals were studied and discussed briefly. The thermodynamics parameters were also determined with Broido method. Parameters such as Activation Energy Enthalpy, Entropy and Gibbs energy were computed from the TGA data using Broido method. The dynamic temperature aspect has been considered eventually and the results were presented in respective section. The DSC measurements curve illustrates heat flow with rising temperature. Specific heat capacities and thermal diffusivities of rock's minerals were measured form the analytical data. The investigation peak and region corresponding to enthalpy involved in the process has been identified in schematic DSC curve. Present investigation deals with measurement of the enthalpy of fusion, enthalpy of crystallization and melting point of minerals besides some other thermal event measurement briefly discussed at room temperature to decomposition temperature. All the measurements and calculations were carried out with scientific evidences. Phase transitions, transition due to resultant energy changes as well as glass transitions has also been recognized and discussed.


Broido Method, Heat Flow, Thermal Diffusivities, Thermal Transition, Thermodynamics Parameter, Specific Heat.

How to Cite this Article?

Patel, C. M., and Patel, C. D. (2021). The Extensive Study of Thermal and Kinetic Behavior as Non Isothermal Degradation with the Help of TGA: Rajasthan Rocks Minerals. i-manager's Journal on Material Science, 8(4), 20-30.


[1]. Alonso, M., Gonzalez, A., De Saja, J. A., & Escalona, A. M. (1991). Quality control of mineral impurities in industrial talcs by thermogravimetric analysis. Thermochimica Acta, 184(1), 125-130. 143-7
[2]. Artiaga, R., Naya, S., Garcia, A., Barbadillo, F., & García, L. (2005). Subtracting the water effect from DSC curves by using simultaneous TGA data. Thermochimica Acta, 428(1-2), 137-139. 04.11.016
[3]. Božanić, D. K., Djoković, V., Blanuša, J., Nair, P. S., Georges, M. K., & Radhakrishnan, T. (2007). Preparation and properties of nano-sized Ag and Ag 2 S particles in biopolymer matrix. The European Physical Journal E, 22(1), 51-59.
[4]. Broido, A. (1969). A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science Part A-2: Polymer Physics, 7(10), 1761- 1773.
[5]. Chong, C. T., Mong, G. R., Ng, J. H., Chong, W. W. F., Ani, F. N., Lam, S. S., & Ong, H. C. (2019). Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Conversion and Management, 180, 1260-1267. enconman.2018.11.071
[6]. Ciullo, P. A. (1996). Industrial minerals and their uses: A handbook and formulary. William Andrew.
[7]. Dollimore, D., Tong, P., & Alexander, K. S. (1996). The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochimica Acta, 282, 13-27. /10.1016/0040-6031(95)02810-2
[8]. El-Sayed, S. A., & Mostafa, M. E. (2015). Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste and Biomass Valorization, RESEARCH PAPERS 6(3), 401-415.
[9]. Guo, H., Qin, Z., Qian, P., Yu, P., Cui, S., & Wang, W. (2011). Crystallization of aragonite CaCO with complex 3 structures. Advanced Powder Technology, 22(6), 777-783.
[10]. Horai, K. I., & Simmons, G. (1969). Thermal conductivity of rock-forming minerals. Earth and Planetary Science Letters, 6(5), 359-368.
[11]. Horváth, E., Frost, R. L., Makó, É., Kristóf, J., & Cseh, T. (2003). Thermal treatment of mechanochemically activated kaolinite. Thermochimica Acta, 404(1-2), 227- 234.
[12]. Krupka, K. M., Hemingway, B. S., Robie, R. A., & Kerrick, D. M. (1985). High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite and wollastonite. American Mineralogist, 70(3-4), 261-271.
[13]. Leake, B. E. (1998). Rock-forming minerals. Mineralogical Magazine, 62(1), 135-136. 10.1180/minmag.1998.062.1.04
[14]. Li, Q., He, R., Gao, J. A., Jensen, J. O., & Bjerrum, N. J. (2003). The CO poisoning effect in PEMFCs operational at temperatures up to 200 °C. Journal of the Electrochemical Society, 150(12).
[15]. Li, X. G., Lv, Y., Ma, B. G., Wang, W. Q., & Jian, S. W. (2017). Decomposition kinetic characteristics of calcium carbonate containing organic acids by TGA. Arabian Journal of Chemistry, 10, S2534-S2538. 1016/j.arabjc.2013.09.026
[16]. Likos, W. J., Olson, H. S., & Jaafar, R. (2012). Comparison of laboratory methods for measuring thermal conductivity of unsaturated soils. In Geo Congress 2012: State of the Art and Practice in Geotechnical Engineering (pp. 4366-4375).
[17]. Macêdo, R. O., Aragao, C. F. S., Do Nascimento, T. G., & Macêdo, A. M. C. (1999). Application of thermogravimetry in the quality control of chloramphenicol tablets. Journal of Thermal Analysis and Calorimetry, 56(3), 1323-1327.
[18]. Mathew, A. P., Packirisamy, S., & Thomas, S. (2001). Studies on the thermal stability of natural rubber / polystyrene interpenetrating polymer networks: Thermogravimetric analysis. Polymer Degradation and Stability, 72(3), 423-439. 0042-8
[19]. Mazumdar, S., & Mukherjee, B. (1983). Structural characterization of the spinel phase in the kaolin-mullite reaction series through lattice energy. Journal of the American Ceramic Society, 66(9), 610-612. /10.1111/j.1151-2916.1983.tb10607.x
[20]. Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Applied Clay Science, 17(5-6), 207-221. 1016/S0169-1317(00)00016-8
[21]. Pask, J. A., & Tomsia, A. P. (1991). Formation of mullite from sol-gel mixtures and kaolinite. Journal of the American Ceramic Society, 74(10), 2367-2373. 11/j.1151-2916.1991.tb06770.x
[22]. Peniche-Covas, C., Argüelles-Monal, W., & San Román, J. (1993). A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation and Stability, 39(1), 21-28.
[23]. Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J., Šoukal, F., & Opravil, T. (2010). The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technology, 204(2-3), 222-227.
[24]. Sprynskyy, M., Kowalkowski, T., Tutu, H., Cukrowska, E. M., & Buszewski, B. (2011). Adsorption performance of talc for uranium removal from aqueous solution. Chemical Engineering Journal, 171(3), 1185-1193. 10.1016/j.cej.2011.05.022
[25]. Stout, J. W., & Robie, R. A. (1963). Heat capacity from 11 to 300 K, entropy, and heat of formation of dolomite. The Journal of Physical Chemistry, 67(11), 2248-2252. https://
[26]. Sunitrová, I., & Trník, A. (2018, July). DSC and TGA of a kaolin-based ceramics with zeolite addition during heating up to 1100 °C. In AIP Conference Proceedings (Vol. 1988, No. 1, p. 020046). AIP Publishing LLC. 1063/1.5047640
[27]. Tavangarian, F., Emadi, R., & Shafyei, A. (2010). Influence of mechanical activation and thermal treatment time on nanoparticle forsterite formation mechanism. Powder Technology, 198(3), 412-416. 1016/j.powtec.2009.12.007
[28]. Traore, K., Kabre, T. S., & Blanchart, P. (2003). Gehlenite and anorthite crystallization from kaolinite and calcite mix. Ceramics International, 29(4), 377-383. https://
[29]. Trivedi, M. K., Tallapragada, R. M., Branton, A., Trivedi, D., Nayak, G., Latiyal, O., ... & Jana, S. (2015). Physicochemical characterization of biofield energy treated calcium carbonate powder. American Journal of Health Research, 3(6), 368-375.
[30]. Wesołowski, M. (1984). Thermal decomposition of talc: A review. Thermochimica Acta, 78(1-3), 395-421.
[31]. Willart, J. F., Carpentier, L., Danède, F., & Descamps, M. (2012). Solid-state vitrification of crystalline griseofulvin by mechanical milling. Journal of Pharmaceutical Sciences, 101(4), 1570-1577. 23041
[32]. Yang, N., Zhang, Z. C., Ma, N., Liu, H. L., Zhan, X. Q., Li, B., ... & Chiang, T. C. (2017). Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride. Results in Physics, 7, 969-974. 1016/j.rinp.2017.02.030

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.