References
[1]. Behera, R. K., Garg, K., Patro, S. S., & Sharma, N. (2018,
July). Eigen-frequency analysis of spherical shell laminated
composite plates with and without central cutouts using
finite elements. In IOP Conference Series: Materials
Science and Engineering (Vol. 390, No. 1). IOP Publishing.
https://doi.org/10.1088/1757-899X/390/1/012043
[2]. Bhardwaj, H., Vimal, J., & Sharma, A. (2015). Study of
free vibration analysis of laminated composite plates with
triangular cutouts. Engineering Solid Mechanics, 3(1), 43-50.
[3]. Boukert, B., Benkhedda, A., Bedia, E. A., & Khodjet-
Kesba, M. (2017). Hygrothermomechanical behavior of
thick composite plates using high order theory. Procedia
Structural Integrity, 5, 115-122. https://doi.org/10.1016/j. prostr.2017.07.076
[4]. Brethee, K. F. (2009). Free vibration analysis of a
symmetric and anti-symmetric laminated composite
plates with a cutout at the center. Al-Qadisiyah Journal for
Engineering Sciences, 2(2), 324-334.
[5]. Chaubey, A., Kumar, A., Fic, S., Barnat-Hunek, D., &
Sadowska-Buraczewska, B. (2019). Hygrothermal analysis
of laminated composite skew conoids. Materials, 12(2),
225-241. https://doi.org/10.3390/ma12020225
[6]. Harik, I., & Peiris, A. (2017). 20 years of CFRP Kentucky's
bridges. In Proceedings of Fourth Conference on Smart
monitoring, Assessment and Rehabilitation of Structures.
[7]. Kar, V. R., Mahapatra, T. R., & Panda, S. K. (2015).
Nonlinear flexural analysis of laminated composite flat
panel under hygro-thermo-mechanical loading. Steel and
Composite Structures, 19(4), 1011-1033. https://doi.org/
10.12989/scs.2015.19.4.1011
[8]. Mahapatra, T. R., & Panda, S. K. (2016, February).
Hygrothermal effects on the flexural strength of laminated
composite cylindrical panels. In IOP Conference Series:
Materials Science and Engineering (Vol. 115, No. 1). IOP
Publishing. https://doi.org/10.1088/1757-899X/115/1/012040
[9]. Mahapatra, T. R., Panda, S. K., & Dash, S. (2016,
September). Effect of hygrothermal environment on the
nonlinear free vibration responses of laminated composite
plates: A nonlinear Unite element micromechanical
approach. In IOP Conference Series: Materials Science
and Engineering (Vol. 149, No. 1). IOP Publishing. https://doi.
org/10.1088/1757-899X/149/1/012151
[10]. Natarajan, S., Deogekar, P. S., Manickam, G., &
Belouettar, S. (2014). Hygrothermal effects on the free
vibration and buckling of laminated composites with
cutouts. Composite Structures, 108, 848-855. https://doi.
org/10.1016/j.compstruct.2013.10.009
[11]. Ram, K. S., & Sinha, P. K. (1991). Hygrothermal effects
on the bending characteristics of laminated composite
plates. Computers & Structures, 40(4), 1009-1015. https://
doi.org/10.1016/0045-7949(91)90332-G
[12]. Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T., & Vu,
T. V. (2012). Free vibration and buckling analysis of laminated composite plates using the NURBS-based
isogeometric finite element method. Composite Structures,
94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.20
12.01.012
[13]. Université Libre de Bruxelles (ULB). (n.d.).
Hygrothermal stresses in laminates [Powerpoint
Presentation]. Retrieved from https://scmero.ulb.ac.be/
Teaching/Courses/MECA-H-406/H-406-6-Hygrothermal.pdf
[14]. Thai, C. H., Rabczuk, T., & Nguyen-Xuan, H. (2013). A
rotation-free isogeometric analysis for composite
sandwich thin plates. International Journal of Composite
Materials, 3(6A), 10-18.
[15]. Zenkour, A. M., & Alghanmi, R. A. (2016). Bending of
symmetric cross-ply multilayered plates in hygrothermal
environments. Mathematical Models in Engineering, 2(2),
94-107. https://doi.org/10.21595/mme.2016.17405