References
[1]. Cheng, Z., Yang, Q., & Sheng, B. (2015). Deep
colorization. In Proceedings of the IEEE International
Conference on Computer Vision (pp. 415-423).
[2]. Dong, C., Loy, C. C., He, K., & Tang, X. (2015). Image
super-resolution using deep convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
38(2), 295-307. https://doi.org/10.1109/TPAMI.2015.2439281
[3]. Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map
prediction from a single image using a multi-scale deep
network, In Proceedings of the 27th International
Conference on Neural Information Processing Systems
(NIPS'14) (pp. 2366–2374).
[4]. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural
algorithm of artistic style. Journal of Vision. Retrieved from
https://arxiv.org/abs/1508.06576v2
[5]. Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., &
Salesin, D. H. (2001, August). Image analogies. In
Proceedings of the 28th annual Conference on Computer
Graphics and Interactive Techniques (pp. 327-340).
[6]. Johnson, J., Alahi, A., & Fei-Fei, L. (2016, October).
Perceptual losses for real-time style transfer and superresolution.
In European Conference on Computer Vision
(pp. 694-711). Retrieved from https://arxiv.org/abs/1603.08
155v1
[7]. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully
convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 3431-3440).
[8]. Mahendran, A., & Vedaldi, A. (2015). Understanding
deep image representations by inverting them. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 5188-5196).
[9]. Noh, H., Hong, S., & Han, B. (2015). Learning
deconvolution network for semantic segmentation. In
Proceedings of the IEEE International Conference on
Computer Vision (pp. 1520-1528).
[10]. Simonyan, K., Vedaldi, A., & Zisserman, A. (2014).
Deep inside convolutional networks: Visualising image
classification models and saliency maps. In 2014,
International Conference on Learning Representations.
Retrieved from https://arxiv.org/abs/1312.6034v2