Integrated Phasor Estimation Technique to Compensate Effect of CCVT Transient on Distance Protection

Preeti Chandrakar *, Rahul Baghel **, Swati Verma***
*-** Department of Electrical and Electronics Engineering, Shri Shankaracharya Group of Institutions, Bhilai, Chhattisgarh, India.
*** Department of Electronics and Telecommunication Engineering, Shri Shankaracharya Group of Institutions, Bhilai, Chhattisgarh, India.
Periodicity:February - April'2020
DOI : https://doi.org/10.26634/jps.8.1.17554

Abstract

This work proposes an improved phasor estimation technique based on intrinsic time decomposition which enhances the distance relay performance during subsidence transient produced by coupling capacitor voltage transformer (CCVT). The proposed logic utilizes relaying signals such as voltage and current at relay point and decomposes it to corresponding baseline and residual signals. Then, the DC component is calculated and removed from the signals. Finally, the phasor of corresponding signals are extracted using discrete fourier transform to evaluate the performance of the distance relay. The proposed integrated phasor estimation based distance relaying algorithm is tested for diverse worst scenarios such as different source impedance ratio and different CCVT burden. The simulation has been performed on 60 Hz, 500 kV CCVT Brazilian power system modelled using EMTDC/PSCAD. Results obtained using proposed phasor estimation scheme enhances the distance relay for correctly discriminating the in-zone faults from out-zone faults. Finally, comparative assessment with other phasor estimation techniques proves the superiority of the proposed technique in distance relaying application.

Keywords

Relay Performance, CCVT, Impedance Ratio, Phasor Estimation.

How to Cite this Article?

Chandrakar, P., Baghel, R., and Verma, S. (2020). Integrated Phasor Estimation Technique to Compensate Effect of CCVT Transient on Distance Protection. i-manager’s Journal on Power Systems Engineering, 8(1), 20-30. https://doi.org/10.26634/jps.8.1.17554

References

[1]. Ahmadi, S., Sanaye-Pasand, M., & Davarpanah, M. (2019). Preventing maloperation of distance protection due to CCVT transients. IET Generation, Transmission & Distribution, 13(13), 2828-2835. https://doi.org/10.1049/ietgtd. 2018.6559
[2]. Ajaei, F. B., Sanaye-Pasand, M., Davarpanah, M., Rezaei-Zare, A., & Iravani, R. (2012). Mitigating the impacts of CCVT subsidence transients on the distance relay. IEEE Transactions on Power Delivery, 27(2), 497-505. https://doi. org/10.1109/TPWRD.2011.2181876
[3]. Akter, S., Biswal, S., Rathore, N. S., Das, P., & Abdelaziz, A. Y. (2020). Amplitude based directional relaying scheme for UPFC compensated line during single pole tripping. Electric Power Systems Research, 184, 1-14. https://doi.org /10.1016/j.epsr.2020.106290
[4]. Biswal, M., & Biswal, S. (2017). A positive-sequence current based directional relaying approach for CCVT subsidence transient condition. Protection and Control of Modern Power Systems, 2(1), 1-8. https://doi.org/10. 1186/s41601-017-0038-0
[5]. Biswal, S., Biswal, M., & Abdelaziz, A. Y. (2018). An adaptive algorithm to prevent distance relay overreach during CCVT transient. Electric Power Systems Research, 160, 362-371. https://doi.org/10.1016/j.epsr.2018.03.015
[6]. Frei, M. G., & Osorio, I. (2007). Intrinsic time-scale decomposition: time–frequency energy analysis and realtime filtering of non-stationary signals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2078), 321-342. https://doi.org/10.109 8/rspa.2006.1761
[7]. GE Multilin (2011). D60 Line Distance Protection System. GE Grid Solutions. Retrieved from https://www.gegrid solutions.com/products/manuals/d60/d60man-v1.pdf
[8]. He, B., Li, Y., & Bo, Z. Q. (2006). An adaptive distance relay based on transient error estimation of CVT. IEEE Transactions on Power Delivery, 21(4), 1856–1861. https:// doi.org/10.1109/TPWRD.2006.877098
[9]. Hou, D., & Roberts, J. (1996, May). Capacitive voltage transformer: transient overreach concerns and solutions for distance relaying. In Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering (Vol. 1, pp. 119-125). IEEE. https://doi.org/10.1109/CCECE.19 96 .548052
[10]. Iravani, M. R., Wang, X., Polishchuk, I., Ribeiro, J., & Sarshar, A. (1998). Digital time-domain investigation of transient behaviour of coupling capacitor voltage transformer. IEEE Transactions on Power Delivery, 13(2), 622- 629. https://doi.org/10.1109/61.660947
[11]. Jiang, Z., Miao, S., & Liu, P. (2014). A modified empirical mode decomposition filtering-based adaptive phasor estimation algorithm for removal of exponentially decaying DC offset. IEEE Transaction on Power Delivery, 29(3), 1326-1334. https://doi.org/10.1109/TPWRD.2014 .2299808
[12]. Kang, Y. C., Zheng, T. Y., Choi, S. W., Kim, Y. H., Kim, Y. G., Jang, S. I., & Kang, S. H. (2009). Design and evaluation of a compensating algorithm for the secondary voltage of a coupling capacitor voltage transformer in the time domain. IET Generation, Transmission & Distribution, 3(9), 793-800. https://doi.org/10.1049/iet-gtd.2008.0563
[13]. Machado, E. P., Fernandes, D., & Neves, W. L. A. (2017). Tuning CCVT frequency response data for improvement of numerical distance protection. IEEE Transactions on Power Delivery, 33(3), 1062-1070. https:// doi.org/10.1109/TPWRD.2017.2725941
[14]. Mahari, A., Sanaye-Pasand, M., & Hashemi, S. M. (2017). Adaptive phasor estimation algorithm to enhance numerical distance protection. IET Generation, Transmission & Distribution, 11(5), 1170-1178. https://doi.org/10.1049 /iet-gtd.2016.0911
[15]. MiCOM P437 (2012). Distance Protection Device Technical Manual. AREVA. Retrieved from https://www.se. com/nz/en/download/document/P437_EN_M_R-11-A__ 311_650/
[16]. Mohammad, P. (2018). A new DC-offset removal method for distance relaying application using intrinsic time-scale decomposition. IEEE Transaction on Power Delivery, 33(2), 971–980. https://doi.org/10.1109/TPWRD .2017.2728188
[17]. Pajuelo, E., Ramakrishna, G., & Sachdev, M.S. (2008). Phasor estimation technique to reduce the impact of coupling capacitor voltage transformer transients. IET Generation, Transmission & Distribution, 2(4), 588–599. https://doi.org/10.1049/iet-gtd:20070505
[18]. Pazoki, M. (2017). A new fault classifier in transmission lines using intrinsic time decomposition. IEEE Transactions on Industrial Informatics, 14(2), 619-628. https://doi.org/10 .1109/TII.2017.2741721
[19]. Power Systems Relaying Committee. (1981). Working Group of the Relay Input Sources Subcommittee,"Transient response of coupling capacitor voltage transformers,". IEEE Transactions on Power Apparatus and Systems, 100(12), 4811-4814.
[20]. Reis, R. L. A., Lopes, F. V., Neves, W. L. A. & Fernandes Jr., D. (2015). Influence of coupling capacitor voltage transformer on travelling wave based fault locators. In International Conference on Power Systems Transients (IPST2015).
[21]. Sweetana, A. (1971). Transient response characteristics of capacitive potential devices. IEEE Transactions on Power Apparatus and Systems, 90(5), 1989-2001. https://doi.org/ 10.1109/TPAS.1971.292994
[22]. Tajdinian, M., Allahbakhshi, M., Seifi, A. R., & Bagheri, A. (2017). Analytical discrete Fourier transformer-based phasor estimation method for reducing transient impact of capacitor voltage transformer. IET Generation, Transmission & Distribution, 11(9), 2324-2332. https://doi.org/10.1049/ iet-gtd.2016.1784
[23]. Tajdinian, M., Allahbakhshi, M., Seifi, A. R., Jahromi, M. Z. & Behi, D. (2019). Auxiliary Prony-based algorithm for performance improvement of DFT phasor estimator against transient of CCVT. IET Science, Measurement & Technology, 13(5), 708-714. https://doi.org/10.1049/ietsmt. 2018.5390
[24]. Venkatesh, C., & Swarup, K. S. (2014). Performance assessment of distance protection fed by capacitor voltage transformer with electronic ferro-resonance suppression circuit. Electric Power Systems Research, 112, 12-19. https://doi.org/10.1016/j.epsr.2014.03.003
[25]. Zadeh, M. R. D., Sidhu, T. S., & Klimek, A. (2009). FPAAbased MHO distance relay considering CVT transient supervision. IET Generation, Transmission & Distribution, 3(7), 616–627. https://doi.org/10.1049/iet-gtd.2008.0520
[26]. Ziegler, G. (2011). Numerical distance protection: Principles and applications (4th ed.). Erlangen, Germany: John Wiley & Sons.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.