References
[1]. Ahmadi, S., Sanaye-Pasand, M., & Davarpanah, M.
(2019). Preventing maloperation of distance protection
due to CCVT transients. IET Generation, Transmission &
Distribution, 13(13), 2828-2835. https://doi.org/10.1049/ietgtd.
2018.6559
[2]. Ajaei, F. B., Sanaye-Pasand, M., Davarpanah, M.,
Rezaei-Zare, A., & Iravani, R. (2012). Mitigating the impacts
of CCVT subsidence transients on the distance relay. IEEE
Transactions on Power Delivery, 27(2), 497-505. https://doi.
org/10.1109/TPWRD.2011.2181876
[3]. Akter, S., Biswal, S., Rathore, N. S., Das, P., & Abdelaziz,
A. Y. (2020). Amplitude based directional relaying scheme
for UPFC compensated line during single pole tripping.
Electric Power Systems Research, 184, 1-14. https://doi.org
/10.1016/j.epsr.2020.106290
[4]. Biswal, M., & Biswal, S. (2017). A positive-sequence
current based directional relaying approach for CCVT
subsidence transient condition. Protection and Control of
Modern Power Systems, 2(1), 1-8. https://doi.org/10.
1186/s41601-017-0038-0
[5]. Biswal, S., Biswal, M., & Abdelaziz, A. Y. (2018). An
adaptive algorithm to prevent distance relay overreach
during CCVT transient. Electric Power Systems Research,
160, 362-371. https://doi.org/10.1016/j.epsr.2018.03.015
[6]. Frei, M. G., & Osorio, I. (2007). Intrinsic time-scale
decomposition: time–frequency energy analysis and realtime
filtering of non-stationary signals. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering
Sciences, 463(2078), 321-342. https://doi.org/10.109
8/rspa.2006.1761
[7]. GE Multilin (2011). D60 Line Distance Protection System.
GE Grid Solutions. Retrieved from https://www.gegrid
solutions.com/products/manuals/d60/d60man-v1.pdf
[8]. He, B., Li, Y., & Bo, Z. Q. (2006). An adaptive distance
relay based on transient error estimation of CVT. IEEE
Transactions on Power Delivery, 21(4), 1856–1861. https://
doi.org/10.1109/TPWRD.2006.877098
[9]. Hou, D., & Roberts, J. (1996, May). Capacitive voltage
transformer: transient overreach concerns and solutions for
distance relaying. In Proceedings of 1996 Canadian
Conference on Electrical and Computer Engineering (Vol.
1, pp. 119-125). IEEE. https://doi.org/10.1109/CCECE.19 96
.548052
[10]. Iravani, M. R., Wang, X., Polishchuk, I., Ribeiro, J., &
Sarshar, A. (1998). Digital time-domain investigation of
transient behaviour of coupling capacitor voltage
transformer. IEEE Transactions on Power Delivery, 13(2), 622-
629. https://doi.org/10.1109/61.660947
[11]. Jiang, Z., Miao, S., & Liu, P. (2014). A modified
empirical mode decomposition filtering-based adaptive
phasor estimation algorithm for removal of exponentially
decaying DC offset. IEEE Transaction on Power Delivery,
29(3), 1326-1334. https://doi.org/10.1109/TPWRD.2014
.2299808
[12]. Kang, Y. C., Zheng, T. Y., Choi, S. W., Kim, Y. H., Kim, Y.
G., Jang, S. I., & Kang, S. H. (2009). Design and evaluation
of a compensating algorithm for the secondary voltage of
a coupling capacitor voltage transformer in the time
domain. IET Generation, Transmission & Distribution, 3(9),
793-800. https://doi.org/10.1049/iet-gtd.2008.0563
[13]. Machado, E. P., Fernandes, D., & Neves, W. L. A.
(2017). Tuning CCVT frequency response data for
improvement of numerical distance protection. IEEE
Transactions on Power Delivery, 33(3), 1062-1070. https:// doi.org/10.1109/TPWRD.2017.2725941
[14]. Mahari, A., Sanaye-Pasand, M., & Hashemi, S. M.
(2017). Adaptive phasor estimation algorithm to enhance
numerical distance protection. IET Generation, Transmission
& Distribution, 11(5), 1170-1178. https://doi.org/10.1049
/iet-gtd.2016.0911
[15]. MiCOM P437 (2012). Distance Protection Device
Technical Manual. AREVA. Retrieved from https://www.se.
com/nz/en/download/document/P437_EN_M_R-11-A__
311_650/
[16]. Mohammad, P. (2018). A new DC-offset removal
method for distance relaying application using intrinsic
time-scale decomposition. IEEE Transaction on Power
Delivery, 33(2), 971–980. https://doi.org/10.1109/TPWRD
.2017.2728188
[17]. Pajuelo, E., Ramakrishna, G., & Sachdev, M.S. (2008).
Phasor estimation technique to reduce the impact of
coupling capacitor voltage transformer transients. IET
Generation, Transmission & Distribution, 2(4), 588–599.
https://doi.org/10.1049/iet-gtd:20070505
[18]. Pazoki, M. (2017). A new fault classifier in transmission
lines using intrinsic time decomposition. IEEE Transactions
on Industrial Informatics, 14(2), 619-628. https://doi.org/10
.1109/TII.2017.2741721
[19]. Power Systems Relaying Committee. (1981). Working
Group of the Relay Input Sources Subcommittee,"Transient
response of coupling capacitor voltage transformers,". IEEE
Transactions on Power Apparatus and Systems, 100(12),
4811-4814.
[20]. Reis, R. L. A., Lopes, F. V., Neves, W. L. A. & Fernandes
Jr., D. (2015). Influence of coupling capacitor voltage
transformer on travelling wave based fault locators. In
International Conference on Power Systems Transients
(IPST2015).
[21]. Sweetana, A. (1971). Transient response characteristics
of capacitive potential devices. IEEE Transactions on Power
Apparatus and Systems, 90(5), 1989-2001. https://doi.org/
10.1109/TPAS.1971.292994
[22]. Tajdinian, M., Allahbakhshi, M., Seifi, A. R., & Bagheri,
A. (2017). Analytical discrete Fourier transformer-based
phasor estimation method for reducing transient impact of
capacitor voltage transformer. IET Generation, Transmission
& Distribution, 11(9), 2324-2332. https://doi.org/10.1049/
iet-gtd.2016.1784
[23]. Tajdinian, M., Allahbakhshi, M., Seifi, A. R., Jahromi,
M. Z. & Behi, D. (2019). Auxiliary Prony-based algorithm for
performance improvement of DFT phasor estimator
against transient of CCVT. IET Science, Measurement &
Technology, 13(5), 708-714. https://doi.org/10.1049/ietsmt.
2018.5390
[24]. Venkatesh, C., & Swarup, K. S. (2014). Performance
assessment of distance protection fed by capacitor
voltage transformer with electronic ferro-resonance
suppression circuit. Electric Power Systems Research, 112,
12-19. https://doi.org/10.1016/j.epsr.2014.03.003
[25]. Zadeh, M. R. D., Sidhu, T. S., & Klimek, A. (2009). FPAAbased
MHO distance relay considering CVT transient
supervision. IET Generation, Transmission & Distribution,
3(7), 616–627. https://doi.org/10.1049/iet-gtd.2008.0520
[26]. Ziegler, G. (2011). Numerical distance protection:
Principles and applications (4th ed.). Erlangen, Germany:
John Wiley & Sons.