Reduced Order Synchronization: A Comparison of Simulation between Mathematica & Matlab

0*
Nizwa College of Applied Sciences, University of Technology and Applied Sciences, Oman.
Periodicity:October - December'2019
DOI : https://doi.org/10.26634/jmat.8.4.17548

Abstract

The present study deals with the synchronization of chaotic systems of different orders. The author investigates the reduced-order synchronization (ROS) problem for a circular restricted three body problem (CRTBP)-Lorenz chaotic systems that are of different orders. The study of ROS has been carried out via a robust generalized active control technique together with the effect of both unknown model uncertainties and external disturbances. Also for the chosen master-slave combination, a comparison of computational study between Mathematica and Matlab has been presented in order to observe the variations. Furthermore, it is discussed that ROS is a special case for multi-switching synchronization of different orders of chaotic systems.

Keywords

Reduced-Order Synchronization, Mathematica, Matlab.

How to Cite this Article?

Shahzad, M. (2019). Reduced Order Synchronization: A Comparison of Simulation between Mathematica & Matlab. i-manager's Journal on Mathematics, 8(4), 1-9. https://doi.org/10.26634/jmat.8.4.17548

References

[1]. Aghababa, M. P., & Aghababa, H. P. (2012). Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties. Nonlinear Dynamics, 67(4), 2689-2701. https://doi.org/10.1007/s11071-011-0181-5
[2]. Ahmad, I., Saaban, A. B., Ibrahim, A. B., & Shahzad, M. (2015). Global chaos synchronization of new chaotic system using linear active control. Complexity, 21(1), 379-386. https://doi.org/10.1002/cplx.21573
[3]. Ahmad, I., Saaban, A. B., Ibrahim, A. B., Shahzad, M., & Naveed, N. (2016). The synchronization of chaotic systems with different dimensions by a robust generalized active control. Optik, 127(11), 4859-4871. https://doi.org/10.1016/j.ijleo.2015. 12.134
[4]. Al-sawalha, M. M., & Noorani, M. S. M. (2011). Adaptive increasing-order synchronization and anti-synchronization of chaotic systems with uncertain parameters. Chinese Physics Letters, 28(11), 1-3. https://doi.org/10.1088/0256-307X/28/11/ 110507
[5]. Castro-Ramírez, J., Martínez-Guerra, R., & Cruz-Victoria, J. C. (2015). A new reduced-order observer for the synchronization of nonlinear chaotic systems: an application to secure communications. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(10), 1-7. https://doi.org/10.1063/1.4934650
[6]. Femat, R., & Solís-Perales, G. (2002). Synchronization of chaotic systems with different order. Physical Review E, 65(3), 036226.
[7]. Ho, M. C., Hung, Y. C., Liu, Z. Y., & Jiang, I. M. (2006). Reduced-order synchronization of chaotic systems with parameters unknown. Physics Letters A, 348(3-6), 251-259. https://doi.org/10.1016/j.physleta.2005.08.076
[8]. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130-141. https://doi. org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
[9]. Njah, A. N. (2011). Synchronization via active control of parametrically and externally excited Φ6 Van der Pol and Duffing oscillators and application to secure communications. Journal of Vibration and Control, 17(4), 493-504. https://doi.org/ 10.1177%2F1077546309357024
[10]. Njah, A. N., & Vincent, U. E. (2009). Synchronization and anti-synchronization of chaos in an extended Bonhöffer–van der Pol oscillator using active control. Journal of Sound and Vibration, 319(1-2), 41-49. https://doi.org/10.1016/j.jsv.2008.05. 036
[11]. Ojo, K. S., Njah, A. N., Olusola, O. I., & Omeike, M. O. (2014). Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique. Nonlinear Dynamics, 77(3), 583-595.
[12]. Shahzad, M. (2015). The improved results with Mathematica and effects of external uncertainty and disturbances on synchronization using a robust adaptive sliding mode controller: a comparative study. Nonlinear Dynamics, 79(3), 2037- 2054. https://doi.org/10.1007/s11071-014-1793-3
[13]. Shahzad, M., & Ahmad, I. (2013). Experimental study of synchronization & Anti-synchronization for spin orbit problem of Enceladus. International Journal of Control Science and Engineering, 3(2), 41-47. https://doi.org/10.5923/j.control. 20130302.02
[14]. Shahzad, M., Ahmad, I., Saaban, A. B., & Ibrahim, A. B. (2016). Improved time response of stabilization in synchronization of chaotic oscillators using Mathematica. Systems, 4(2), 1-21. https://doi.org/10.3390/systems4020025
[15]. Sparrow, C. (1982). The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer.
[16]. Strogatz, S. H. (2011). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Colorado, United States: Westview Press.
[17]. Szebehely, V. (1967). Theory of Orbits. New York: Academic Press.
[18]. Vincent, U. E., & Ucar, A. (2007). Synchronization and anti-synchronization of chaos in permanent magnet reluctance machine. Far East Journal of Dynamical System, 9, 211–221.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.