References
[1]. Ahmed, S., Shaffer, J., Harris, J., Pham, M., Daniel, A.,
Chowdhury, S., & Banerjee, S. (2019). Simulation studies
of non-toxic tin-based perovskites: Critical insights into solar
performance kinetics through comparison with standard
lead-based devices. Superlattices and Microstructures,
130, 20-27. https://doi.org/10.1016/j.spmi.2019.04.017
[2]. Baena, J. P. C., Abate, A., Saliba, M., Tress, W.,
Jacobsson, T. J., Gratzel, M., & Hagfeldt, A. (2017). The
rapid evolution of highly efficient perovskite solar cells.
Energy & Environmental Science, 10, 710-727. https://doi.
org/10.1039/C6EE03397K
[3]. Boyd, C. C., Cheacharoen, R., Leijtens, T., &
McGehee, M. D. (2018). Understanding degradation
mechanisms and improving stability of perovskite
photovoltaics. Chemical Reviews, 119(5), 3418-3451.
https://doi.org/10.1021/acs.chemrev.8b00336
[4]. Etgar, L. (2016). Hole-transport material-free perovskitebased
solar cells. MRS Bulletin, 40, 674-679. https://doi.org/
10.1557/mrs.2015.174
[5]. Green, M. A., Ho-Baillie, A., Snaith, H. J. (2014). The
emergence of perovskite solar cells. Nature Photonics, 8,
506-512. https://doi.org/10.1038/nphoton.2014.134
[6]. Hima, A., Lakhdar, N., Benhaoua, B., Saadoune, A.,
Kemerchou, I., & Rogti, F. (2019). An optimized perovskite
solar cell designs for high conversion efficiency.
Superlattices and Microstructures, 129, 240-246. https://
doi.org/10.1016/j.spmi.2019.04.007
[7]. Pham, M., Harris, J., Shaffer, J., Daniel, A., Chowdhury,
S., Ali, A., ... & Ahmed, S. (2019). Bismuth perovskite as a
viable alternative to Pb perovskite solar cells: Device
simulations to delineate critical efficiency dynamics.
Journal of Materials Science: Materials in Electronics,
30(10), 9438-9443. https://doi.org/10.1007/s10854-019-
01275-3
[8]. Qiu, W., Buffiere, M., Brammertz, G., Paetzold, U. W.,
Froyen, L., Heremans, P., & Cheyns, D. (2015). High
efficiency perovskite solar cells using a PCBM/ZnO double
electron transport layer and a short air-aging step. Organic
Electronics, 26, 30-35. https://doi.org/10.1016/j.orgel.201
5.06.046
[9]. Saquib, A., Harris, J., Shaffer, J., Devgun, M.,
Chowdhury, S., Abdullah, A., & Banerjee, S. (2019).
Simulation studies of Sn-based perovskites with Cu backcontact
for non-toxic and non-corrosive devices. Journal of
Materials Research, 34(16), 2789-2795. https://doi.org/10.
1557/jmr.2019.204
[10]. Snaith, H. J. (2013). Perovskites: The emergence of a
new era for low-cost, high-efficiency solar cells. The Journal
of Physical Chemistry Letters, 4(21), 3623-3630. https://
doi.org/10.1021/jz4020162
[11]. Wang, K., Lin, Z., Ma, J., Liu, Z., Zhou, L., Du, J., ... &
Hao, Y. (2017). High-performance simple-structured planar
heterojunction perovskite solar cells achieved by precursor
optimization. ACS Omega, 2(9), 6250-6258.
[12]. Wang, R., Mujahid, M., Duan, Y., Wang, Z. K., Xue, J.,
& Yang, Y. (2019). A review of perovskites solar cell stability.
Advanced Functional Materials, 29(47). https://doi.org/
10.1002/adfm.201808843
[13]. Zhang, L. Q., Zhang, X. W., Yin, Z. G., Jiang, Q., Liu, X.,
Meng, J. H., ... & Wang, H. L. (2015). Highly efficient and
stable planar heterojunction perovskite solar cells via a low temperature solution process. Journal of Materials
Chemistry A, 3(23), 12133-12138. https://doi.org/10.1039/
C5TA01898F
[14]. Zhang, Y., Hu, X., Chen, L., Huang, Z., Fu, Q., Liu, Y., ...
& Chen, Y. (2016). Flexible, hole transporting layer-free and
stable CH3 NH3 PbI61 /PC BM planar heterojunction perovskite
solar cells. Organic Electronics, 30, 281-288. https://doi.
org/10.1016/j.orgel.2016.01.002
[15]. Zhou, Z., & Pang, S. (2020). Highly efficient inverted
hole-transport-layer-free perovskite solar cells. Journal of
Materials Chemistry A, 8(2), 503-512.