References
[1]. Abrate, S. (1994). Optimal design of laminated plates and shells. Composite Structures, 29(3), 269-286. https:// doi.org/10.1016/0263-8223(94)90024-8
[2]. Arab, S. B., Rodrigues, J. D., Bouaziz, S., & Haddar, M. (2017). A finite element based on Equivalent Single Layer Theory for rotating composite shafts dynamic analysis. Composite Structures, 178, 135-144. https://doi.org/10. 1016/j.compstruct.2017.06.052
[3]. Badie, M. A., Mahdi, A., Abutalib, A. R., Abdullah, E. J., & Yonus, R. (2006). Automotive composite drives hafts: investigation of the design variables effects. International Journal of Engineering and Technology, 3(2), 227-237.
[4]. Badie, M. A., Mahdi, E., & Hamouda, A. M. S. (2011). An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Materials & Design, 32(3), 1485-1500.
[5]. Bert, C. W., & Reddy, V. S. (1982). Cylindrical shells of bimodulus composite materials. Journal of the Engineering Mechanics Division, 108(5), 675-688.
[6]. Dinesh, D., & Raju, A. F. (2012). Optimum design and analysis of a composite drive shaft for an automobile by using genetic algorithm and ansys. International Journal of Engineering Research and Applications, 2(4), 1874- 1880.
[7]. Hu, Y., Yang, M., Zhang, J., Song, C., & Zhang, W. (2015). Research on torsional capacity of composite drive shaft under clockwise and counter-clockwise torque. Advances in Mechanical Engineering. 7(4). https://doi.org/10.1177/1687814015582109
[8]. Kim, H. S., Kim, J. W., & Kim, J. K. (2004). Design and manufacture of an automotive hybrid aluminum/composite drive shaft. Composite Structures, 63(1), 87-99. https://doi. org/10.1016/S0263-8223(03)00136-3
[9]. Kim, J. K., Lee, D. G., & Cho, D. H. (2001). Investigation of adhesively bonded joints for composite propeller shafts. Journal of Composite Materials, 35(11), 999-1021.
[10]. Mutasher, S. A. (2009). Prediction of the torsional strength of the hybrid aluminum/composite drive shaft. Materials & Design, 30(2), 215-220.
[11]. Prasad, K., & Aiswarya, S. (2016). Finite element modelling and buckling analysis of delaminated composite plates. International Journal of Science and Research, 5(7), 1193-1195.
[12]. Rajendran, S., & Song, D. Q. (1998, November). Finite element modelling of delamination buckling of nd composite panel using ANSYS. In Proceedings of the 2 Asian ANSYS User Conference.
[13]. Rao, B. J. P., Srikanth, D. V., Kumar, T. S., & Rao, L. S. (2016). Design and analysis of automotive composite propeller shaft using FEA. Materials Today: Proceedings, 3(10), 3673-3679. https://doi.org/10.1016/j.matpr.2016. 11.012
[14]. Reddy, P. S. K., & Nagaraju, C. (2017). Weight optimization and finite element analysis of composite automotive drive shaft for maximum stiffness. Materials Today: Proceedings, 4(2), 2390-2396.
[15]. Sevkat, E., & Tumer, H. (2013). Residual torsional properties of composite shafts subjected to impact loadings. Materials & Design, 51, 956-967. https://doi.org/ 10.1016/j.matdes.2013.05.004
[16]. Talib, A. A., Ali, A., Badie, M. A., Lah, N. A. C., & Golestaneh, A. F. (2010). Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft. Materials & Design, 31(1), 514- 521. https://doi.org/10.1016/j.matdes.2009.06.015
[17]. Tariq, M., Nisar, S., Shah, A., Akbar, S., Khan, M. A., & Khan, S. Z. (2018). Effect of hybrid reinforcement on the performance of filament wound hollow shaft. Composite Structures, 184, 378-387. https://doi.org/10.1016/j.comp