Design and Analysis of a High Speed Hybrid Automotive Composite Propeller Shaft using Ansys 18.1

Abhishek Patel*, Shabana Naz Siddique**
*-** Department of Mechanical Engineering, Bhilai Institute of Technology, Durg, Bhilai, India.
Periodicity:January - June'2020
DOI : https://doi.org/10.26634/jic.8.1.17509

Abstract

Substituting composite structures for conventional metallic structures has many advantages because of strength to weight ratio. Laminated composites, with their advantage of higher specific stiffness, gained substantiality in the field of torque carrying structures through many applications. Composite drive shafts has the ability of being the lighter and longer life drive train with higher critical speed. This work aim stop provide an alternative of conventional steel drive shaft for an automotive application and investigates for different combinations of composite materials and different stacking sequence opposite torque directional so determine the natural frequency of composite drive shaft with the help of ANSYS 18.1.

Keywords

Composite Drive Shaft, ANSYS 18.1, Finite Element Method, Torsional Rigidity.

How to Cite this Article?

Patel, A., and Siddique, S. N. (2020). Design and Analysis of a High Speed Hybrid Automotive Composite Propeller Shaft using Ansys 18.1. i-manager's Journal on Instrumentation and Control Engineering, 8(1), 22-27. https://doi.org/10.26634/jic.8.1.17509

References

[1]. Abrate, S. (1994). Optimal design of laminated plates and shells. Composite Structures, 29(3), 269-286. https:// doi.org/10.1016/0263-8223(94)90024-8
[2]. Arab, S. B., Rodrigues, J. D., Bouaziz, S., & Haddar, M. (2017). A finite element based on Equivalent Single Layer Theory for rotating composite shafts dynamic analysis. Composite Structures, 178, 135-144. https://doi.org/10. 1016/j.compstruct.2017.06.052
[3]. Badie, M. A., Mahdi, A., Abutalib, A. R., Abdullah, E. J., & Yonus, R. (2006). Automotive composite drives hafts: investigation of the design variables effects. International Journal of Engineering and Technology, 3(2), 227-237.
[4]. Badie, M. A., Mahdi, E., & Hamouda, A. M. S. (2011). An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Materials & Design, 32(3), 1485-1500.
[5]. Bert, C. W., & Reddy, V. S. (1982). Cylindrical shells of bimodulus composite materials. Journal of the Engineering Mechanics Division, 108(5), 675-688.
[6]. Dinesh, D., & Raju, A. F. (2012). Optimum design and analysis of a composite drive shaft for an automobile by using genetic algorithm and ansys. International Journal of Engineering Research and Applications, 2(4), 1874- 1880.
[7]. Hu, Y., Yang, M., Zhang, J., Song, C., & Zhang, W. (2015). Research on torsional capacity of composite drive shaft under clockwise and counter-clockwise torque. Advances in Mechanical Engineering. 7(4). https://doi.org/10.1177/1687814015582109
[8]. Kim, H. S., Kim, J. W., & Kim, J. K. (2004). Design and manufacture of an automotive hybrid aluminum/composite drive shaft. Composite Structures, 63(1), 87-99. https://doi. org/10.1016/S0263-8223(03)00136-3
[9]. Kim, J. K., Lee, D. G., & Cho, D. H. (2001). Investigation of adhesively bonded joints for composite propeller shafts. Journal of Composite Materials, 35(11), 999-1021.
[10]. Mutasher, S. A. (2009). Prediction of the torsional strength of the hybrid aluminum/composite drive shaft. Materials & Design, 30(2), 215-220.
[11]. Prasad, K., & Aiswarya, S. (2016). Finite element modelling and buckling analysis of delaminated composite plates. International Journal of Science and Research, 5(7), 1193-1195.
[12]. Rajendran, S., & Song, D. Q. (1998, November). Finite element modelling of delamination buckling of nd composite panel using ANSYS. In Proceedings of the 2 Asian ANSYS User Conference.
[13]. Rao, B. J. P., Srikanth, D. V., Kumar, T. S., & Rao, L. S. (2016). Design and analysis of automotive composite propeller shaft using FEA. Materials Today: Proceedings, 3(10), 3673-3679. https://doi.org/10.1016/j.matpr.2016. 11.012
[14]. Reddy, P. S. K., & Nagaraju, C. (2017). Weight optimization and finite element analysis of composite automotive drive shaft for maximum stiffness. Materials Today: Proceedings, 4(2), 2390-2396.
[15]. Sevkat, E., & Tumer, H. (2013). Residual torsional properties of composite shafts subjected to impact loadings. Materials & Design, 51, 956-967. https://doi.org/ 10.1016/j.matdes.2013.05.004
[16]. Talib, A. A., Ali, A., Badie, M. A., Lah, N. A. C., & Golestaneh, A. F. (2010). Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft. Materials & Design, 31(1), 514- 521. https://doi.org/10.1016/j.matdes.2009.06.015
[17]. Tariq, M., Nisar, S., Shah, A., Akbar, S., Khan, M. A., & Khan, S. Z. (2018). Effect of hybrid reinforcement on the performance of filament wound hollow shaft. Composite Structures, 184, 378-387. https://doi.org/10.1016/j.comp
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.