Snow Wetness And Density Estimation Using Space Based Synthetic Aperture Radar Data

Praveen Thakur*, Rahul D Garg**, Garg P.K.***
* Scientist, Department of Water Resources, Indian Institute of Remote Sensing (IIRS), Dehradun, Uttarakhand, India.
** Assistant Professor, Department of Civil Engineering, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, India.
*** Professor, Department of Civil Engineering, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, India.
Periodicity:December - February'2012


The current study has been done using space based Synthetic Aperture Radar (SAR) satellite data to estimate the snow wetness and snow density in Manali watershed of Beas River, Himachal Pradesh, India. SAR data used is dual co-polarized (HH/VV) data of Environmental Satellite (ENVISAT), Advanced Synthetic Aperture Radar (ASAR) and Advanced Land Observing Satellite (ALOS)-Phased Array type L-band Synthetic Aperture Radar (PALSAR) data. SAR based inversion models were implemented in Mathematica and MATLAB, and has been used for finding wet and dry snow dielectric constant, snow wetness and snow density. Maps of forest cover, layover and shadow were used to mask these areas in snow parameter estimation. Overall accuracy in terms of R2 value comes out to be 0.86 for snow wetness and, 0.85 for snow density based on ground truth data for subset area of Manali sub-basin of Beas river upto Manali.


SAR, Snow density, Snow wetness, Inversion model, Manali.

How to Cite this Article?

Thakur, P, K., Garg, R, D., and Garg, P, K. (2012). Snow Wetness And Density Estimation Using Space Based Synthetic Aperture Radar Data. i-manager’s Journal on Civil Engineering, 2(1), 10-20.


[1]. Ambach, W.D. (1980). The Dielectric Behavior of Snow: A Study versus liquid water content. NASA Workshop on Microwave Remote Sensing of Snowpack Properties, A. Rango, ed., In: NASA Conference Publication 2153, 59-62.
[2]. Baghadi, N., Gauthier, Y., and Bernier, M. (1997). Capability of multitemporal ERS-1 SAR Data for Wet-snow mapping. Remote Sensing of Environment, 60, 174-186.
[3]. Bartsch, A., Jansa, J., Schoner, M., and Wagner, W. (2007). Monitoring of spring snowmelt with Envisat ASAR WS in the Eastern Alps by combination of ascending and descending orbits. In: Proc. Envisat Symposium 2007, Montreux, Switzerland, ESA SP-636.
[4]. Braun, M., and Rau, F.,(2001). Using a multi-year data archive of ERS-SAR imagery for monitoring snow line positions and ablation patters on the King George Island ice cap (Antarctica). EARSeL eProceedings, 1: 281-291.
[5]. Cloude, S.R., (1992). Uniqueness of target decomposition theorems in radar polarimetry. Direct and Inverse Methods in Radar Polarimetry, Part 1, Boerner, W-M, ed. Kluwer Academic Publishers, Dordrecht, Netherlands: 267-296.
[6]. Cloude, S.R., and Pottier, E. (1996). A review of target decomposition theorems in radar polarimetry, IEEE Trans. GRS, 34(2), 498-518.
[7]. Dhanju, M.S. (1983). Studies of Himalayan snow cover area from satellites. Hydrological Applications of Remote Sensing and Remote Data Transmission, Proceedings of the Hamburg Symposium, IAHS (145), 401-409.
[8]. Dozier, J., and Painter H.T. (2004). Multispectral and hyperspectral remote sensing of alpine snow properties, Annu. Rev. Earth Planet. Sci., 32, 465–94.
[9]. Dozier, J. (1984). Snow reflectance from Landsat-4 Thematic Mapper. IEEE Transactions on Geoscience and Remote Sensing, GE22 (3), 323–328.
[10]. Dozier, J. (1989). Spectral signature of Alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 28, 9–22.
[11]. Dozier, J., and Marks, D. (1987). Snow mapping and classification from Landsat Thematic Mapper data. Annals of Glaciology, 9, 97–103.
[12]. Frei, U., Graf, C., and Meier, E. (1993). Cartographic Reference Systems, SAR Geocoding. Data and System, Wichmann Verlag.
[13]. Fung, A.K. (1994). Microwave Scattering and Emission Models and Their Applications. Norwood, MA Artech House.
[14]. Fung, A.K., and Chen, K.S. (2010). Microwave Scattering and Emission Models for Users. Artech House 685, Canton Street, Norwood, MA 02062.
[15]. Fung, A.K., Li, Z., and Chen, K.S. (1992). Backscattering from a randomly rough surface. IEEE Trans. Geosci.Remote Sens, 30, 356-369.
[16]. Goodison, B.E., Waterman, S.E., and Langham, E.J. (1980). Application of synthetic aperture radar data to snow cover monitoring. In: Sixth Canadian Symposium on Remote Sensing, at Halifax, Nova Scotia.
[17]. Gupta, R.P., Haritashya, U.K., and Singh, P. (2005). Mapping dry/wet snow cover in the Indian Himalayas using IRS multi spectral imagery. Remote Sensing of Environment, 97, 458–469.
[18]. Hall, D.K., Riggs, G.A., and Salomonson, V.V. (1995). Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data, Remote Sensing of Environment, 54, 127-140.
[19]. Hallikainen, M., Ulaby, F. T., and Abdelrazik, M. (1986). Dielectric properties of snow in the 3 to 37 GHz range, IEEE Trans. Antennas Propagat., Vol. AP-34, pp. 1329–1339.
[20]. Holecz, F., Meier, E. Piesbergen, J. and Nüesch, D. (1993). Topographic effects on radar cross section, SAR Calibration Workshop". Proceedings of CEOS Calibration Sub-Group, ESTEC, Noordwijk.
[21]. Kendra, J.R., Sarabandi, K., and Ulaby, F.T. (1998). Radar Measurements of Snow: Experiment and Analysis, IEEE Transactions on Geoscience and Remote Sensing, 36(3), 864-879.
[22]. Kendra, J.R., Ulaby, F.T., and Sarabandi, K. (1994). Snow probe for in situ determination of wetness and density, IEEE Trans. Geosci. RemoteSensing, 32, 1152–1159.
[23]. Looyenga, H. (1965). Dielectric constant of heterogeneous mixtures. Physica, 21, 401–406.
[24]. Luojus, K.P., Pulliainen, J.T., Metsämäki, S.J., and Hallikainen, M.T. (2006). Accuracy assessment of sar data-based snow-covered area estimation method. IEEE Transactions on Geoscience and Remote Sensing, 44(2), 277-287.
[25]. Luojus, K.P., Pulliainen, J.T., Metsämäki, S.J., and Hallikainen, M.T. (2009). Enhanced SAR-based snow-covered area estimation method for boreal forest zone. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 403-407.
[26]. Matzler, C. (1987). Applications of the interaction of microwaves with the natural snow cover. Remote Sensing Review, 2, 259–387.
[27]. Matzler, C. (1996). Microwave remote sensing of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 34 (2), 573–581.
[28]. Nagelkerke, N. (1991). A Note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692.
[29]. Nagler, T., and Rott, H. (2004). Snow classification algorithm for ENVISAT ASAR. In: Proc. of the 2004 Envisat & ERS Symposium, Salzburg, Austria, 6-10 September 2004 (ESA SP-572, April 2005).
[30]. Niang, M, Dedieu, J.P., Durand, Y., Mérindol, L., Bernier, M., and Dumont, M. (2007). New inversion method for snow density and snow liquid water content retrieval using C-band data from ENVISAT/ASAR alternating polarization in alpine environment. In: ENVISAT Symposium, 23–27 April 2007 Montreux, ESA SP-636.
[31]. Nyfors, E. (1982). On dielectric properties of dry snow in the 800 MHz to 13 GHz region. Helsinki University of Technology. Radio Laboratory, Rep. S13.
[32]. Raina, V.K. (2009). Himalayan Glaciers - a state-of-art review of glacial studies, glacial retreat and climate change, MOEF discussion paper, by Ministry of Environment & Forests (MOEF), Government of India and G.B. Pant Institute of Himalayan Environment & Development Kosi-Katarmal, Almora, 1-60.
[33]. Rango, A., and Salomonson, V.V. (1975). Employment of satellite snow cover observations for improving seasonal runoff estimates. In operational applications of satellite snow cover observations. NASA-SP-391, 157-174.
[34]. Rees, W.G. (2006). Remote Sensing of Snow and Ice, CRC Press 2006, Pages 137–156, Print ISBN: 978-0-415-29831-5, eBook ISBN: 978-1-4200-2374-9, DOI: 10.1 201/9781420023749.ch5
[35]. Rosich, B., and Meadows, P. (2004). Absolute calibration of ASAR Level 1 products generated with PF-ASAR, ENVI-CLVL-EOPG-TN-03-0010. Issue 1, revision 5.07 October 2004. ESA-ESRIN.
[36]. Rott, H., and Mätzler, C. (1987). Possibilities and limitations of synthetic aperture radar for snow and glacier surveying. Annals of Glaciology, 9:195–199.
[37]. Rott, H., Davis, R.E., and Dozier, J., (1992). Polarimetric and multifrequency SAR signatures of wet snow. In Proceedings of IGARSS '92, at Houston, Texas.
[38]. Rott, H., and R.E. Davies. (1993). Multifrequency and polarimetric SAR observations on alpine glaciers. Annals of Glaciology, 17.
[39]. Shi, J., and Dozier, J. (1995). Inferring snow wetness using C-band data from SIR-C's polarimetric synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 33, 905–914.
[40]. Shi, J., and Dozier, J. (2000). Estimation of snow water equivalence using SIR-C/X SAR, Part I:inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing, 38, 2465–2474.
[41]. Steel, R. G. D., and Torrie, J. H. (1960). Principles and Procedures of Statistics, New York: McGraw-Hill, 187, 287.
[42]. Shi, J., Dozier, J., and Hensley, S., (1997). Mapping snow cover with repeat pass synthetic aperture radar. IEEE Proceedings of IGARSS'97, ISBN-0-7803-3839-, 628-630.
[43]. Singh, G., and Venkataraman, G. (2007). Snow wetness estimation using advanced synthetic aperture radar data. Journal of Applied Remote Sensing, 1, 013521 (doi:10.1117/1.2768622).
[44]. Singh, G., and Venkataraman, G., (2009). Snow density estimation using polarimetric ASAR data. In: Proceedings of IEEE IGARSS09, 2, II-630–II-633.
[45]. Singh, G., and Venkataraman, G. (2010) Snow permittivity retrieval inversion algorithm for estimating snow wetness. Geocarto International, 25(3), 187-212.
[46]. Singh, P., and Singh, V.P., (2001). Snow and Glacier Hydrology, Series: Water Science and Technology library 37, 756 pages, Kluwer Academic Publishers.
[47]. Singh, V.P., Singh, P., and Haritashya, U. K., (Eds.) (2011). Encyclopedia of Snow, Ice and Glaciers, Series: Encyclopedia of Earth Sciences Series, 1st edition., 2011, XLVI, 1254 p. 659 illus., 428 in color.
[48]. Snehmani, Venkataraman, G. , Nigam, A.K., and Singh, G. (2010). Development of an inversion algorithm for dry snow density estimation and its application with ENVISAT-ASAR dual co-polarization data, Geocarto International, 25: 8, 597 - 616.
[49]. Storvold, R., Malnes, E., Larsen, Y., Høgda, K.A., Hamran, S.E., M¨uller, K., and Langley, K. A. (2006). SAR Remote sensing of snow parameters in Norwegian areas—current status and future perspective. Progress In Electromagnetics Research Symposium, Cambridge, USA, pp. 182-186.
[50]. Strozzi, T., and Matzler, C. (1998). Backscattering measurements of Alpine snow covers at 5.3 and 35 GHz. IEEE Transactions on Geoscience and Remote Sensing, 36, 838–848.
[51]. Strozzi, T. (1996). Backscattering measurements of snow covers at 5.3 and 35 GHz, Ph. D dissertation, Institute of applied Physics, Univ. of Bern, Bern, Switzerland.
[52]. Strozzi, T., Wegmüller, U., and Mätzler, C. (1999). Mapping wet snow covers with SAR interferometry. Int. J. Rem.Sens., Vol. 20, 2395-2403.
[53]. Thakur, P.K., Maity, D., Parodi, G., Aggarwal, S.P., and Nikam, B.R. (2010). Hydrological and 1-d hydrodynamic modeling in Manali sub-basin of Beas river, Himachal Pradesh, India. In ASCE-EWRI international conference on 3rd International Perspective on Current & Future State of Water Resources & the Environment, January 5-7, 2010, Chennai, India.
[54]. Thakur, P.K., Snehmani, Prasad, V.H., and Aggarwal, S.P. (2008). Snow cover area and glaciers extraction in Manali sub basin using multi polarimetric ENVISAT ASAR. In: ISRS National symposium on advances in remote sensing technology with special emphasis on microwave remote sensing, Ahemdabad.
[55]. Thakur, P.K., Snehmani, Prasad, V.H., Aggarwal, S.P., and Jain, S.K. (2009). Snow cover mapping using multi-sensor SAR data for parts of western Himalayas. In: International Symposium on Snow and Avalanches (ISSA), at Snow and Avalanche Establishment (SASE), Manali, India 6–10 April.
[56]. Tiuri, M., Sihvola, A., Nyfors, E., and Hallikainen, M. (1984). The complex dielectric constant of snow at microwave frequencies. IEEE Journal of Oceanic Engineering, 9, 377–382.
[57]. Ulaby, F.T., and Stiles, W.H. (1980). The active and passive microwave response to snow parameters, Part II: water equivalent of dry snow. Journal of Geophysics Research, 83, 1045–1049.
[58]. Ulaby, F.T., Moore, R.K., and Fung, A.K., (1986). Microwave remote sensing, active and passive, from theory to applications. Vol. III. Reading, PA: Addison
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.