References
[1]. Aciar, S., Zhang, D., Simoff, S., & Debenham, J. (2007).
Informed recommender: Basing recommendations on
consumer product reviews. IEEE Intelligent Systems, 22(3),
39-47. https://doi.org/10.1109/MIS.2007.55
[2]. Chen, G., & Chen, L. (2014, July). Recommendation
based on contextual opinions. In International Conference
on User Modeling, Adaptation, and Personalization (pp.
61-73). Cham: Springer. https://doi.org/10.1007/978-3-
319-08786-3_6
[3]. Chen, G., & Chen, L. (2015). Augmenting service
recommender systems by incorporating contextual
opinions from user reviews. User Modeling and User-
Adapted Interaction, 25(3), 295-329. https://doi.org/10.
1007/s11257-015-9157-3
[4]. Coelho, F., Devezas, J., & Ribeiro, C. (2013, May).
Large-scale crossmedia retrieval for playlist generation and
song discovery. In Proceedings of the 10th Conference on
Open Research Areas in Information Retrieval (pp. 61-64).
[5]. Da'u, A., & Salim, N. (2019). Sentiment-aware deep
recommender system with neural attention networks. IEEE
Access, 7, 45472-45484. https://doi.org/10.1109/ACCE
SS.2019.2907729
[6]. Desrosiers, C., & Karypis, G. (2011). A comprehensive
survey of neighborhood-based recommendation
methods. In Recommender Systems Handbook (pp. 107-
144). Boston, MA: Springer. https://doi.org/10.1007/978-0-
387-85820-3_4
[7]. Khan, Z. A., Zubair, S., Imran, K., Ahmad, R., Butt, S. A., &
Chaudhary, N. I. (2019). A new users rating-trend based
collaborative denoising auto-encoder for top-n
recommender systems. IEEE Access, 7, 141287-141310.
https://doi.org/ 10.1109/ACCESS.2019.2940603
[8]. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E.
(2017). A survey of deep neural network architectures and
their applications. Neurocomputing, 234, 11-26. https://do
i.org/10.1016/j.neucom.2016.12.038
[9]. Musto, C., de Gemmis, M., Semeraro, G., & Lops, P. (2017, August). A multi-criteria recommender system
exploiting aspect-based sentiment analysis of users'
reviews. In Proceedings of the Eleventh ACM Conference
on Recommender Systems (pp. 321-325). https://doi.org
/10.1145/3109859.3109905
[10]. Ribeiro, D., Machado, J., Ribeiro, J., Vasconcelos, M.
J. M., Vieira, E. F., & de Barros, A. C. (2017, April). SousChef:
Mobile meal recommender system for older adults. In 3rd
International Conference on Information and
Communication Technologies for Ageing Well and e-
Health (ICT4AWE 2017) (pp. 36-45).
[11]. Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). Ecommerce
recommendation applications. Data Mining
and Knowledge Discovery, 5(1-2), 115-153. https://doi.org
/10.1023/A:1009804230409
[12]. Shoja, B. M., & Tabrizi, N. (2019). Customer reviews
analysis with deep neural networks for E-commerce
recommender systems. IEEE Access, 7, 119121-119130.
https://doi.org/ 10.1109/ACCESS.2019.2937518
[13]. Susan, M. M., & David, S. (2010). What makes a
helpful online review? A study of customer reviews on
amazon. com. MIS Quarterly, 34(1), 185-200.
[14]. Tay, Y., Luu, A. T., & Hui, S. C. (2018, July). Multi-pointer
co-attention networks for recommendation. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (pp.
2309-2318). https://doi.org/10.1145/3219819.3220086
[15]. Toledo, R. Y., Alzahrani, A. A., & MartÃnez, L. (2019). A
food recommender system considering nutritional
information and user preferences. IEEE Access, 7, 96695-
96711. https://doi.org/10.1109/ACCESS.2019.2929413
[16]. Tran, T. N. T., Atas, M., Felfernig, A., & Stettinger, M.
(2018). An overview of recommender systems in the
healthy food domain. Journal of Intelligent Information
Systems, 50(3), 501-526. https://doi.org/10.1007/s10844-
017-0469-0
[17]. Wang, Q., Peng, B., Shi, X., Shang, T., & Shang, M.
(2019). DCCR: Deep collaborative conjunctive
recommender for rating prediction. IEEE Access, 7, 60186-
60198. https://doi.org/10.1109/ACCESS.2019.2915531
[18]. Wang, Y., Wang, M., & Xu, W. (2018). A sentimentenhanced
hybrid recommender system for movie
recommendation: A big data analytics framework.
Wireless Communications and Mobile Computing, 1-9.
https://doi.org/10.1155/2018/8263704
[19]. Zheng, L., Noroozi, V., & Yu, P. S. (2017, February). Joint
deep modeling of users and items using reviews for
recommendation. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining
(pp. 425-434).