References
[1]. Anand, U., & Katz, J. (2003). Prevention of nozzle wear in
abrasive water suspension jets (AWSJ) using porous
lubricated nozzles. ASME The Journal of Tribology, 125(1),
168-180. https://doi.org/10.1115/1.1491977
[2]. Brown, G. J. (2002). Erosion prediction in slurry pipeline
tee-junctions. Applied Mathematical Modeling, 26(2),
155-170. https://doi.org/10.1016/S0307-904X(01)00053-1
[3]. Chetana, S., & Chopade. (2017). A review on nozzle
wear using cfd analysis in abrasive water suspension jet
machining. Vishwakarma Journal of Engineering
Research, 1(3), 2456-8465.
[4]. Deepak, D., Anjaiah, D., Karanth, K. V., & Sharma, N. Y.
(2012). CFD simulation of flow in an abrasive water
suspension jet: the effect of inlet operating pressure and
volume fraction on skin friction and exit kinetic energy.
Advances in Mechanical Engineering, 4, 1-8. https://doi.
org/10.1155%2F2012%2F186430
[5]. Deng, J., Zhang, X., Niu, P., Liu, L., & Wang, J. (2006).
Wear of ceramic nozzles by dry sand blasting. Tribology
International, 39(3), 274-280. https://doi.org/10.101
6/j.triboint.2004.07.026
[6]. Folkes, J. (2009). Waterjet- An innovative tool for
manufacturing. Journal of Materials Processing Technology,
209(20), 6181-6189.
[7]. Hashish, M. (1994). Observation of wear of abrasivewaterjet
nozzle materials. Journal of Tribology, 116, 439-
444. https://doi.org/10.1115/1.2928861
[8]. Jegaraj, J. J. R., & Babu, N. R. (2005). A strategy for efficient and quality cutting of materials with abrasive
waterjets considering the variation in orifice and focusing
nozzle diameter. International Journal of Machine Tools
and Manufacture, 45(12-13), 1443-1450. https://doi.org
/10.1016/j.ijmachtools.2005.01.020
[9]. Li, H. Z., Wang, J., & Fan, J. M. (2009). Analysis and
modelling of particle velocities in micro-abrasive air jet.
International Journal of Machine Tools and Manufacture,
49(11), 850-858. https://doi.org/10.1016/j.ijmachtools.
2009.05.012
[10]. Liu, H., Wang, J., Kelson, N., & Brown, R. J. (2004). A
study of abrasive waterjet characteristics by CFD
simulation. Journal of Materials Processing Technology,
153, 488-493. https://doi.org/10.1016/j.jmatprotec.2004.0
4.037
[11]. Maniadaki, K., Kestis, T., Bilalis, N., & Antoniadis, A.
(2007). A finite element-based model for pure waterjet
process simulation. The International Journal of Advanced
Manufacturing Technology, 31(9-10), 933-940. https://doi.
org/10.1007/s00170-005-0274-8
[12]. Mostofa, M. G., Kil, K. Y., & Hwan, A. J. (2010).
Computational fluid analysis of abrasive waterjet cutting
head. Journal of Mechanical Science and Technology,
24(1), 249-252. https://doi.org/10.1007/s12206-009-1142-5
[13]. Nanduri, M., Taggart, D. G., & Kim, T. J. (2002). The
effects of system and geometric parameters on abrasive
waterjet nozzle wear. International Journal of Machine Tools
and Manufacture, 42, 615-623.
[14]. Nguyen, T., Shanmugam, D. K., & Wang, J. (2008).
Effect of liquid properties on the stability of an abrasive
waterjet. International Journal of Machine Tools and
Manufacture, 48(10), 1138-1147. https://doi.org/10.10
16/j.ijmachtools.2008.01.009
[15]. Qiang, Z., Wu, M., Miao, X., & Sawhney, R. (2018).
CFD research on particle movement and nozzle wear in
the abrasive water jet cutting head. The International
Journal of Advanced Manufacturing Technology, 95(9-12),
4091-4100. https://doi.org/10.1007/s00170-019-04577-2
[16]. Ramanathan, S., Naveen, E., Vijay, K., CampbellTerrin,
M. J., & AnishKisshore, S. (2019). Flow simulation in abrasive
fluid jet Machining with water as carrier medium using CFD. International Journal of Innovative Technology and
Exploring Engineering (IJITEE), 8(12), 176-184.
[17]. Srinivasu, D. S., & Ramesh Babu, N. (2008). A neurogenetic
approach for selection of process parameters in
abrasive waterjet cutting considering variation in diameter
of focusing nozzle. Applied Soft Computing, 8(1), 809-819.
https://doi.org/10.1016/j.asoc.2007.06.007
[18]. Venugopal, S., Chandresekaran, M., Muthuraman,
V., & Sathish, S. (2017, March). Computational Fluid
Dynamics Analysis of Nozzle in Abrasive Water Jet
Machining. In IOP Conference Series: Materials Science
and Engineering (Vol. 183, No. 1, pp. 1-9).
[19]. Venugopal, S., Karikalan, L., Jacob, S., &
Shaisundaram, V. S. (2018). CFD simulation and analysis of abrasive fluid jet machining. International Journal of
Advance Engineering and Research Development, 5(3),
80-86.
[20]. Verma, S., Mishra, S. K., & Moulick, S. K. (2015). CFD
analysis of nozzle in abrasive water suspension jet
machining. International Journal of Advanced Engineering
Research and Studies, 236, 1-6.
[21]. Zohoor, M., & Nourian, S. H. (2012). Development of
an algorithm for optimum control process to compensate
the nozzle wear effect in cutting the hard and tough
material using abrasive water jet cutting process. The
International Journal of Advanced Manufacturing
Technology, 61(9-12), 1019-1028. https://doi.org/10.1007
/s00170-011-3761-0