3Fe3O9.9 owing to the design of the metal-EDTA complex, and also crystals with other LSFO structures. LSFO particles were also prepared on carbon paper by using spraying and roasting processes for use as the air electrode in a metal-air secondary battery. The addition of surfactant to the (La,Sr,Fe)-EDTA solution made it possible to prepare uniformly distributed LSFO particles sized approximately 100 nm on carbon paper. The catalytic effects of the different LSFO films on the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated. Unique solution-based synthesis with compositional accuracy for metal-air secondary battery has been proposed.

">

Fabrication of Lanthanum Strontium Iron Oxide (LSFO) Films From (La,Sr,Fe)-EDTA Solutions with Atmospheric Sintering for Metal-Air Secondary Batteries

Keiji Komatsu*, Mirai Yamamura **, Wang Yu ***, Keita Abe ****, Tsuyoshi Kikuta *****, Atsushi Nakamura ******, Hidetoshi Saitoh *******
*-*****,******* Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata, Japan.
****** Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata, Japan & Chubu Chelest, 3-3-3 Hinagahigashi, Yokkaichi, Mie, Japan.
Periodicity:October - December'2020
DOI : https://doi.org/10.26634/jms.8.3.17472

Abstract

Perovskite-type lanthanum strontium iron oxide (LSFO) films were synthesized on Si substrate with metalethylenediaminetetraacetic (metal-EDTA) complex. The starting material of the metal composition has been La:Sr:Fe=1:3:3, followed by atmospheric sintering at temperatures ranging from 550 °C to 950 °C. The process produced LaSr3Fe3O9.9 owing to the design of the metal-EDTA complex, and also crystals with other LSFO structures. LSFO particles were also prepared on carbon paper by using spraying and roasting processes for use as the air electrode in a metal-air secondary battery. The addition of surfactant to the (La,Sr,Fe)-EDTA solution made it possible to prepare uniformly distributed LSFO particles sized approximately 100 nm on carbon paper. The catalytic effects of the different LSFO films on the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated. Unique solution-based synthesis with compositional accuracy for metal-air secondary battery has been proposed.

Keywords

Lanthanum Strontium Iron Oxide (LFSO), Metal-EDTA Solution, Stoichiometry, Electrochemical Property, Catalytic Activity.

How to Cite this Article?

Komatsu, K., Yamamura, M., Yu, W., Abe, K., Kikuta, T., Nakamura, A., and Saitoh, H. (2020). Fabrication of Lanthanum Strontium Iron Oxide (LSFO) Films From (La,Sr,Fe)-EDTA Solutions with Atmospheric Sintering for Metal-Air Secondary Batteries. i-manager's Journal on Material Science, 8(3), 1-10. https://doi.org/10.26634/jms.8.3.17472

References

[1]. Ding, T. Z., Wang, Y. M., & Shi, S. H. (2003). Electrical transport behavior of perovskite-type oxide LSCO. Journal of Materials Science Letters, 22(1), 1-3. https://doi.org/10. 1023/A:1021773902483
[2]. Grgur, B. N., Marković, N. M., & Ross, P. N. (1997). Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions. Canadian Journal of Chemistry, 75(11), 1465-1471.
[3]. Komatsu, K., Nakamura, A., Kato, A., Ohshio, S., Akasaka, H., & Saitoh, H. (2011). Investigation of temperature dependence on emission properties of Sr-Al- O: Eu2+ phosphor synthesized using elemental diffusion from substrate. Material Science Engineering, 18, 1-5. https://doi.org/10.1088/1757-899X/18/10/102017
[4]. Komatsu, K., Shirai, T., Nakamura, A., Kato, A., Ohshio, S., Nambu, N., ... & Saitoh, H. (2013). Synthesis and luminescence properties of Eu2+ -doped 8-coordinated SrO phosphors. Ceramics International, 39(6), 7115-7118. https://doi.org/10.1016/j.ceramint.2013.02.053
[5]. Komatsu, K., Tsuchida, S., Maruyama, H., Ohshio, S., Akasaka, H., Saitoh, H., & Nakamura, A. (2014). Synthesis of 2+ a violet S r–A l–O: E u phosphor particle using elemental Al diffusion. International Journal of Applied Ceramic Technology, 11(3), 594-601. https://doi.org/10.1111/ijac. 12050
[6]. Kraytsberg, A., & Ein-Eli, Y. (2013). The impact of nanoscaled materials on advanced metal–air battery systems. Nano Energy, 2(4), 468-480.
[7]. Li, X., Liu, Z., Song, L., Wang, D., & Zhang, Z. (2018). Three-dimensional graphene network supported ultrathin CeO nanoflakes for oxygen reduction reaction and 2 rechargeable metal-air batteries. Electrochimica Acta, 263, 561-569. https://doi.org/10.1016/j.electacta.2017. 10.167
[8]. Lim, C., Kim, C., Gwon, O., Jeong, H. Y., Song, H. K., Ju, Y. W., ... & Kim, G. (2018). Nano-perovskite oxide prepared via inverse microemulsion mediated synthesis for catalyst of lithium-air batteries. Electrochimica Acta, 275, 248-255. https://doi.org/10.1016/j.electacta.2018.04.121
[9]. Lu, H. S., Zhang, H., Zhang, X., Sun, N., Zhu, X., Zhao, H., & Wang, G. (2018). Transformation of carbonencapsulated metallic Co into ultrafine Co/CoO nanoparticles exposed on N-doped graphitic carbon for high-performance rechargeable zinc-air battery. Applied Surface Science, 448, 369-379. https://doi.org/10.1016/j. apsusc.2018.04.146
[10]. Montini, T., Bevilacqua, M., Fonda, E., Casula, M. F., Lee, S., Tavagnacco, C., ... & Fornasiero, P. (2009). Relationship between electrical behavior and structural characteristics in Sr-doped LaNi0.6 Fe0.4 O3-d mixed oxides Chemistry of Materials. 21. 1768-1774. https://doi.org/10. 1021/cm900467c
[11]. Mizusaki, J. (1992). Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics, 52(1-3), 79-91. https://doi.org/ 10.1016/0167-2738(92)90093-5
[12]. Mizusaki, J., Tabuchi, J., Matsuura, T., Yamauchi, S., & Fueki, K. (1989). Electrical conductivity and seebeck coefficient of nonstoichiometric La1 − x Sr x CoO3 − δ. Journal of the Electrochemical Society, 136(7), 2082-2088. https://doi.org/10.1149/1.2097187
[13]. Nakamura, A., Nambu, N., Kawahara, K., Ohshio, S., & Saitoh, H. (2003). Power of Y2 O3 : Eu red phosphor synthesized from metal-EDTA complexes. Journal of the Ceramic Society of Japan, 111(2), 142-146. https://doi. org/10.2109/jcersj.111.142
[14]. Oh, E. O., Whang, C. M., Lee, Y. R., Park, S. Y., Prasad, D. H., Yoon, K. J., ... & Lee, H. W. (2014). Fabrication of thinfilm gadolinia-doped ceria (GDC) interdiffusion barrier layers for intermediate-temperature solid oxide fuel cells (ITSOFCs) by chemical solution deposition (CSD). Ceramics International, 40(6), 8135-8142. https://doi.org/10.1016/ j.ceramint.2014.01.008
[15]. Qu, L., Liu, Y., Baek, J. B., & Dai, L. (2010). Nitrogendoped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 4(3), 1321-1326.
[16]. Ramadass, N. (1978). ABO -type oxides-Their structure 3 and properties-A bird's eye view. Materials Science and Engineering, 36(2), 231 - 239. https://doi.org/ 10.1016/0025-5416(78)90076-9
[17]. Rossmeisl, J., Logadottir, A., & Nørskov, J. K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319(1-3), 178-184.
[18]. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J., & Nørskov, J. K. (2007). Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 607(1-2), 83-89. https://doi. org/10.1016/j.jelechem.2006.11.008
[19]. Saitoh, H., Kawahara, K. I., Ohshio, S., Nakamura, A., & Nambu, N. (2005). Metal composition of Y2 O3 : Eu powder evaluated using particle analyzer. Science and Technology of Advanced Materials, 6(2), 205-209. https:// doi.org/10.1016/j.stam.2004.11.015
[20]. Takeguchi, T., Yamanaka, T., Takahashi, H., Watanabe, H., Kuroki, T., Nakanishi, H., ... & Matsuda, M. (2013). Layered perovskite oxide: A reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. Journal of the American Chemical Society, 135(30), 11125-11130.
[21]. Tugova, E. A. (2009). A comparative analysis of the formation processes of Ruddlesden-Popper phases in the La2 O3-SrO-M2 O3 (M= Al, Fe) systems. Glass Physics and Chemistry, 35(4), 416-422. https://doi.org/10.1134/S1 087659609040117
[22]. Watanabe, H., Takahashi, H., Takeguchi, T., Yamanaka, T., & Ueda, W. (2010). Performance of solid alkaline fuel cells employing layered perovskite-type oxides as electrolyte. ECS Transactions, 33(1), 1825-1829. https:// doi.org/10.1149/1.3484672
[23]. Xue, Y., Sun, S., Wang, Q., Miao, H., Li, S., & Liu, Z. (2017). La0.7 (Sr0.3–xPdx3) MnO as a highly efficient electrocatalyst for oxygen reduction reaction in aluminum air battery. Electrochimica Acta, 230, 418-427. https://doi. org/10.1016/j.electacta.2017.01.181
[24]. Yuasa, M., Imamura, H., Nishida, M., Kida, T., & Shimanoe, 3 K. (2012). Preparation of nano-LaNiO support electrode for rechargeable metal-air batteries. Electrochemistry Communications, 24, 50-52. https://doi.org/10.1016/j. elecom.2012.08.015
[25]. Zhang, X., Wang, X. G., Xie, Z., & Zhou, Z. (2016). Recent progress in rechargeable alkali metal–air batteries. Green Energy & Environment, 1(1), 4-17.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.