References
[1]. Afsar, A. M., & Go, J. (2010). Finite element analysis of
thermoelastic field in a rotating FGM circular disk. Applied
Mathematical Modelling, 34(11), 3309-3320.
[2]. Ali, A., Bayat, M., Sahari, B. B., Saleem, M., & Zaroog, O.
S. (2012). The effect of ceramic in combinations of two
sigmoid functionally graded rotating disks with variable
thickness. Scientific Research and Essays, 7(25), 2174-
2188. https://doi.org/10.5897/SRE11.619
[3]. Asemi, K., Salehi, M., & Akhlaghi, M. (2014). Postbuckling
analysis of FGM annular sector plates based on
three dimensional elasticity graded finite elements.
International Journal of Non-Linear Mechanics, 67, 164-
177.
[4]. Bayat, M., Sahari, B. B., Saleem, M., Dezvareh, E., &
Mohazzab, A. H. (2011). Analysis of functionally graded
rotating disks with parabolic concave thickness applying
an exponential function and the Mori-Tanaka scheme. IOP
Conference Series: Materials Science and Engineering
(Vol. 17). IOP Publishing. https://doi.org/10.1088/1757-89
9X/17/1/012005
[5]. Bayat, M., Saleem, M., Sahari, B. B., Hamouda, A. M. S.,
& Mahdi, E. (2009). Mechanical and thermal stresses in a
functionally graded rotating disk with variable thickness
due to radially symmetry loads. International Journal of
Pressure Vessels and Piping, 86(6), 357-372. https://doi.
org/10.1016/j.ijpvp.2008.12.006
[6]. Bhandari, M., & Purohit, K. (2014). Analysis of
functionally graded material plate under transverse load
for various boundary conditions. IOSR Journal of
Mechanical and Civil Engineering, 10(5), 46-55.
[7]. Çallioğlu, H. (2011). Stress analysis in a functionally
graded disc under mechanical loads and a steady state
temperature distribution. Sadhana, 36(1), 53–64. https://
doi.org/10.1007/s12046-011-0005-9
[8]. Callioglu, H., Bektas, N. B., & Sayer, M. (2011). Stress
analysis of functionally graded rotating discs: Analytical
and numerical solutions. Acta Mechanica, 27(6), 950-955.
[9]. Callioglu, H., Sayer, M., & Demir, E. (2011). Stress
analysis of functionally graded discs under mechanical
and thermal loads. Indian Journal of Engineering &
Material Sciences, 18, 111-118.
[10]. Chandrupatla, T. R., Belegundu, A. D. (2002).
Introduction to finite elements in engineering (3rd ed.).
Upper Saddle River, NJ: Prentice Hall.
[11]. Clayton, J. D., & Rencis, J. J. (2000). Numerical
integration in the axisymmetric finite element formulation.
Advances in Engineering Software, 31(2), 137-141. https:
//doi.org/10.1016/S0965-9978(99)00021-6
[12]. Duc, N. D., Anh, V. T. T., & Cong, P. H. (2014). Nonlinear
axisymmetric response of FGM shallow spherical shells on
elastic foundations under uniform external pressure and
temperature. European Journal of Mechanics-A/Solids, 45,
80-89. https://doi.org/10.1016/j.euromechsol.2013.11.008
[13]. Eraslan, A. N. (2003). Elastic–plastic deformations of
rotating variable thickness annular disks with free,
pressurized and radially constrained boundary conditions.
International Journal of Mechanical Sciences, 45(4), 643-
667. https://doi.org/10.1016/S0020-7403(03)00112-7
[14]. Hong, M., Park, I., & Lee, U. (2014). Dynamics and
waves characteristics of the FGM axial bars by using
spectral element method. Composite Structures, 107, 585-
593.
[15]. Khodaei, Z. S. (2005). Preliminaries to modeling and
analysis of functionally graded materials (Master's
Dissertation), Czech Technical University, Prague. Retrieved
from https://mech.fsv.cvut.cz/~zemanj/teaching/06_shari
f_khodaei.pdf
[16]. Mahamood, R. M., Akinlabi, E. T., Shukla, M., &
Pityana, S. (2012). Functionally graded material: An
overview. In Proceedings of the World Congress on
Engineering (Vol. 3), (pp.1593-1597).
[17]. Maruthi, B. H., Reddy, M. V., & Channakeshavalu, K.
(2012). Finite element formulation for prediction of overspeed
and burst-margin limits in aero-engine disc.
International Journal of Soft Computing and Engineering,
2, 172-176.
[18]. Nejad, A., Abedi, M., Hassan, M., & Ghannad, M.
(2013). Elastic analysis of exponential FGM disks subjected
to internal and external pressure. Central European Journal
of Engineering, 3(3), 459-465.
[19]. Nejad, M. Z., Jabbari, M., & Ghannad, M. (2015).
Elastic analysis of FGM rotating thick truncated conical
shells with axially-varying properties under non-uniform
pressure loading. Composite Structures, 122, 561-569.
https://doi.org/10.1016/j.compstruct.2014.12.028
[20]. Rosyid, A., Saheb, M. E., & Yahia, F. B. (2014). Stress
analysis of nonhomogeneous rotating disc with arbitrarily
variable thickness using finite element method. Research
Journal of Applied Sciences, Engineering and Technology,
7(15), 3114-3125.
[21]. Seshu, P. (2003). Textbook of finite element analysis
(pp. 167-171). New Delhi, India: PHI Learning.
[22]. Shariyat, M., & Mohammadjani, R. (2013). Threedimensional
compatible finite element stress analysis of
spinning two-directional FGM annular plates and disks with
load and elastic foundation non-uniformities. Latin
American Journal of Solids and Structures, 10(5), 859-890.
[23]. Sharma, J. N., Sharma, D., & Kumar, S. (2011). Analysis
of stresses and strains in a rotating homogeneous
thermoelastic circular disk by using finite element method.
International Journal of Computer Applications, 35(13),
10-14.
[24]. Sharma, J. N., Sharma, D., & Kumar, S. (2012). Stress
and strain analysis of rotating FGM Thermoelastic circular
disk by using FEM. International Journal of Pure and Applied
Mathematics, 74(3), 339-352.
[25]. Sondhi, L., Sanyal, S., Saha, K. N., & Bhowmick, S.
(2015). An approximate solution to the stress and
deformation states of functionally graded rotating disks. In
Proceedings of the 11th International Conference on
Mechanical Engineering. https://doi.org/10.1063/1.4958
351
[26]. Zafarmand, H., & Hassani, B. (2014). Analysis of twodimensional
functionally graded rotating thick disks with
variable thickness. Acta Mechanica, 225, 453-464.
[27]. Zafarmand, H., & Kadkhodayan, M. (2015). Nonlinear
analysis of functionally graded nanocomposite rotating
thick disks with variable thickness reinforced with carbon
nanotubes. Aerospace Science and Technology, 41, 47-
54. https://doi.org/10.1016/j.ast.2014.12.002
[28]. Zenkour, A. M., & Mashat, D. S. (2011). Stress function
of a rotating variable-thickness annular disk using exact
and numerical methods. Engineering, 3(4), 422-430.