Document Image Analysis and Enhancement - A Brief Review on Digital Preservation

Lalit Prakash Saxena*
Applied Research Section, Combo Consultancy, Obra, Sonebhadra, Uttar Pradesh, India.
Periodicity:January - March'2021
DOI : https://doi.org/10.26634/jip.8.1.17380

Abstract

Document image analysis is an important procedure in deriving adequate preservation policies for old and ancient documents. Frequently, image enhancement techniques are employed to serve the purpose of document analysis and post-processing. In due course of time, documents may have deterioration and adequate preservation policies are of immense need, and for such, enhancement procedures are employed. This paper presents image enhancement techniques, their methodology, implementation, and results. Further, image processing is a procedure that deals with analysis of image details from proposed input to desired output. Furthermore, this analysis is the observation that involves both test and processed images by virtue of processing through an enhancement technique.

Keywords

Document Images, Image Analysis, Processing, Enhancement, Digital Preservation.

How to Cite this Article?

Saxena, L. P. (2021). Document Image Analysis and Enhancement - A Brief Review on Digital Preservation. i-manager's Journal on Image Processing, 8(1), 36-44. https://doi.org/10.26634/jip.8.1.17380

References

[1]. Abid, A. (1997). 'Memory of the world': Preserving our documentary heritage. Museum International, 49(1), 40- 45. https://doi.org/10.1111/1468-0033.00074
[2]. Alahakoon, C. N. (2006). Identification of physical problems of major palm leaf manuscripts collections in Sri Lanka. Journal of the University Librarians Association of Sri Lanka, 10,54–66.
[3]. An, J., Kpeyiton, K. G., & Shi, Q. (2020). Grayscale images colorization with convolutional neural networks. Soft Computing, 24(7), 4751-4758. https://doi.org/10.1007/s00 500-020-04711-3
[4]. Arifin, A. Z., & Asano, A. (2006). Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recognition Letters, 27(13), 1515-1521. https://doi. org/10.1016/j.patrec.2006.02.022
[5]. Baird, H. S. (2003, August). Digital libraries and document image analysis. In Seventh International Conference on Document Analysis and Recognition (pp. 2-14). IEEE. https://doi.org/10.1109/ICDAR.2003.1227619
[6]. Bar, L., Brook, A., Sochen, N., &Kiryati, N. (2007). Deblurring of color images corrupted by impulsive noise. IEEE Transactions on Image Processing, 16(4), 1101-1111. https://doi.org/10.1109/TIP.2007.891805
[7]. Bar, L., Sochen, N., & Kiryati, N. (2005, April). Image deblurring in the presence of salt-and-pepper noise. In International Conference on Scale-Space Theories in Computer Vision (pp. 107-118). Heidelberg, Berlin: Springer. https://doi.org/10.1007/11408031_10
[8]. Bonny, M. Z., & Uddin, M. S. (2019, December). Degraded document enhancement through binarization techniques. In 2019, International Conference on Sustainable Technologies for Industry 4.0 (STI) (pp. 1-6). IEEE. https://doi.org/10.1109/STI47673.2019.9068099
[9]. Brown, M. S., & Seales, W. B. (2004). Image restoration of arbitrarily warped documents. IEEE Transactions on Pattern Analysis And Machine Intelligence, 26(10), 1295- 1306. https://doi.org/10.1109/TPAMI.2004.87
[10]. Chiu, Y. H., Chung, K. L., Yang, W. N., Huang, Y. H., & Liao, C. H. (2012). Parameter-free based two-stage method for binarizing degraded document images. Pattern Recognition, 45(12), 4250-4262. https://doi.org/ 10.1016/j.patcog.2012.02.023
[11]. Dey, S., Bhattacharya, B. B., Kundu, M. K., & Acharya, T. (2000, January). A fast algorithm for computing the Euler number of an image and its VLSI implementation. In Proceedings of 13th International Conference on VLSI Design (pp. 330-335). IEEE. https://doi.org/10.1109/ICVD. 2000.812628
[12]. Dobreva, M., & Ikonomov, N. (2004). Digital preservation and access to cultural and scientific heritage: Presentation of the KT-digicult-BG project. International Journal Information Theories & Applications, 11(3), 204–210.
[13]. Dubois, E., & Pathak, A. (2001, April). Reduction of bleed-through in scanned manuscript documents. In Paediatric Intensive Care Society, 1(4), 177-180.
[14]. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2006). Adaptive degraded document image binarization. Pattern Recognition, 39(3), 317-327. https://doi.org/10. 1016/j.patcog.2005.09.010
[15]. Goltz, D., Attas, M., Young, G., Cloutis, E., & Bedynski, M. (2010). Assessing stains on historical documents using hyperspectral imaging. Journal of Cultural Heritage, 11(1), 19-26. https://doi.org/10.1016/j.culher.2009.11.003
[16]. Kavallieratou, E., & Antonopoulou, H. (2005). Advanced Concepts for Intelligent Vision Systems. Heidelberg, Berlin: Springer-Verlag.
[17]. Kim, S. J., Deng, F., & Brown, M. S. (2011). Visual enhancement of old documents with hyperspectral imaging. Pattern Recognition, 44(7), 1461-1469. https:// doi.org/10.1016/j.patcog.2010.12.019
[18]. Kong, X., Qian, Y., Jiao, G., & Miao, Z. (2020, April). Noise removing method for low-light-level image based on four-direction nonlocal means. In Sixth Symposium on Novel Optoelectronic Detection Technology and Applications (Vol. 11455, p. 114550T). International Society for Optics and Photonics. https://doi.org/10.1117/ 12.2559777
[19]. Kumar, D. U., Sreekumar, G., & Athvankar, U. (2009). Traditional writing system in southern India—palm leaf manuscripts. Design Thoughts, 7, 2-7.
[20]. Mello, C., Sanchez, A., Oliveira, A., & Lopes, A. (2008). An efficient gray-level thresholding algorithm for historic document images. Journal of Cultural Heritage, 9(2), 109-116. https://doi.org/10.1016/j.culher.2007.09.004
[21]. Montani, I., Sapin, E., Pahud, A., & Margot, P. (2012). Enhancement of writings on a damaged medieval manuscript using ultraviolet imaging. Journal of Cultural Heritage, 13(2), 226-228. https://doi.org/10.1016/j.culher. 2011.09.002
[22]. O'Gorman, L., Sammon, M. J., & Seul, M. (2008). Practical algorithms for image analysis with CD-ROM. New York, USA: Cambridge University Press.
[23]. Oh, H. H., Lim, K. T., & Chien, S. I. (2005). An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recognition, 38(12), 2612-2625. https://doi.org/ 10.1016/j.patcog.2004.11.025
[24]. Quandt, A. B. (1996). Recent developments in the conservation of parchment manuscripts. The Book and Paper Group Annual, 15(199), 99-116.
[25]. Ramponi, G., Stanco, F., Dello Russo, W., Pelusi, S., & Mauro, P. (2005). Digital automated restoration of manuscripts and antique printed books. In Proceedings of Electronic Imaging and the VisualArts (pp.186–191).
[26]. Sahoo, J. (2004). Preservation of library materials: Some preventive measures. The Orissa Historical Research Journal, 47(1), 105-114.
[27]. Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. https://doi.org/10.1016/S0031-3203(99)00055-2
[28]. Saxena, L. P. (2014). An effective binarization method for readability improvement of stain-affected (degraded) palm leaf and other types of manuscripts. Current Science, 107(3), 489-496.
[29]. Saxena, L. P. (2018). Separation, classification and expert mapping of old grantha documents symbols. imanager's Journal on Pattern Recognition, 5(4), 51-67. https://doi.org/10.26634/jpr.5.4.16108
[30]. Saxena, L. P. (2019). A survey of manuscripts digitization to restoration using image processing. imanager's Journal on Pattern Recognition, 6(3), 27-36. https://doi.org/10.26634/jpr.6.3.17302
[31]. Saxena, L. P. (2019). Niblack's binarization method and its modifications to real-time applications: A review. Artificial Intelligence Review, 51(4), 673-705. https://doi. org/10.1007/s10462-017-9574-2
[32]. Saxena, L. P. (2020). A discussion on image binarization methods. i-manager's Journal on Image Processing, 7(4), 36-46. https://doi.org/10.26634/jip.7.4. 17331
[33]. Su, B., Lu, S., & Tan, C. L. (2010, June). Binarization of historical document images using the local maximum and minimum. In Proceedings of the 9th IAPR International Workshop on Document Analysis Systems (pp. 159-166). https://doi.org/10.1145/1815330.1815351
[34]. Surinta, O., & Chamchong, R. (2008, October). Image segmentation of historical handwriting from palm leaf manuscripts. In International Conference on Intelligent Information Processing (pp. 182-189). Boston, MA: Springer. https://doi.org/10.1007/978-0-387-87685-6_ 23
[35]. Thouin, P. D., & Chang, C. I. (2000). A method for restoration of low-resolution document images. International Journal on Document Analysis and Recognition, 2(4), 200-210. https://doi.org/10.1007/Pl0002 1526
[36]. Turner, N. (1994). The conservation of medieval manuscript illuminations and the question of compensation. WAAC Newsletter 16(1), 21–22.
[37]. Uhlí, Z. (2004). Manuscript digitization and electronic processing of manuscripts in the Czech national library. International Journal of Information Theories & Applications, 11(3), 257–262.
[38]. Wu, C. C., Chou, C. H., & Chang, F. (2008). A machine-learning approach for analyzing document layout structures with two reading orders. Pattern Recognition, 41(10), 3200-3213. https://doi.org/10.1016/ j.patcog.2008.03.014
[39]. Zhang, Z., & Tan, C. L. (2001, October). Restoration of images scanned from thick bound documents. In Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205) (Vol. 1, pp. 1074-1077). IEEE. https://doi.org/10.1109/ICIP.2001.959235
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.