Adaptive Compensation Techniques For Power Consumption Of Sub-Threshold Circuits – A Review

Jasmer Singh*, Saha K**, G.L. Pahuja***
*-** ST Microelectronics, Greater Noida, India.
*** Electrical Engineering Department, N.I.T. Kurukshetra, India.
Periodicity:February - April'2012
DOI : https://doi.org/10.26634/jes.1.1.1736

Abstract

IC Designers are struggling for tradeoff between significant variation effects and very tight power constraints in current nanometer regime. Usage of conventional timing safety margin approach becomes the cause of continuous power consumption to prevent the design from low probability timing variations.  Various solutions have been proposed to achieve optimized power consumption/dissipation. Dynamic Threshold Voltage Vth Scaling (DVTS), Dynamic Voltage Scaling (DVS) and Dynamic Voltage and Frequency Scaling (DVFS) are some of the reported techniques in literature to achieve optimized power consumption. These approaches deals with aggressive standby Vth and VDD scaling by tracking PVT variations to smartly tradeoff between safety of data and decreased power consumption. In this paper different power saving strategies are discussed along with their benefits and limitations. This study will be helpful to select an effective power saving strategy to minimize the power dissipation.

Keywords

Low power, Dynamic Threshold Voltage Vth Scaling (DVTS), Dynamic Voltage Scaling (DVS) and Dynamic Voltage and Frequency Scaling (DVFS), Razor flip-flop, Canary flip-flop, error detection, error correction

How to Cite this Article?

Singh,J., Saha.K., and Pahuja.G.L. (2012). Adaptive Compensation Techniques for Power Consumption of Sub-Threshold Circuits – A Review. i-manager’s Journal on Embedded Systems, 1(1), 37-44. https://doi.org/10.26634/jes.1.1.1736

References

[1]. Roy, K. et al. (2003). Proceeding of IEEE, Feb.
[2]. DAC' (2004). Proceedings of the 41 Annual Design Automation Conference, ACM NEW York, NY, USA.
[3]. Taur, Y., & Ning, T.H. (1998). Fundamentals of Modern VLSI Devices, Cambridge University Press.
[4]. Seok, M., Sylvester, D., & Blaauw, D. (2008). The Phoenix Processor: A 30pW Platform for Sensor Applications. Symp. VLSI Circuits, pp.188–189.
[5]. Ickes, N., Bhardwaj, M., Awang, & Chandrakasan, A. P., (2008). A 10-pJ/instruction, 4-MIPS Micropower DSP for Sensor Applications. Proc. ASSCC, pp.289–292.
[6]. Zhai, B., Blaauw, D., Sylvester, D., and Lautner, K. (2004). Theoretical And practical limits of dynamic st Voltage Scaling. Proc. 41 Design Automation Conf. Jun. pp. 868–873.
[7]. Wei, L., Chen, Z., and Roy, K. (1999). Design and Optimization of Dual Threshold Circuits for Low Voltage, Low Power Applications. IEEE Transaction on VLSI Systems, Vol. 17, No. 1, pp. 16-24.
[8]. Karnik, T., Borkar, S., and De, D. (2002). Sub-90 nm Technologies Challenges and Opportunities for CAD,” ACM/IEEE ICCAD, pp. 203-206.
[9]. Ye, Y., Borkar, S. and De, S., (1998). A New Technique for Standby Leakage Reduction in High-Performance Circuits. Symposium on VLSI Circuits, pp. 40-41.
[10]. Johnson, M. C., Somasekhar, D. and Roy, K., (1999). Models and Algorithms for Bounds on Leakagein CMOS Circuits. IEEE Trans. On CAD, Vol. 18, pp. 714-725.
[11]. Mutoh, S. S., Douseki, T., Matsuya, Y., Aoki, T., Sigematsu, S., and Yamada, J. (1995). IEEE J. Solid-State Circuits, Vol. 30, pp. 847-854.
[12]. Kao, J., Chandrakasan, A., and Antoniadis, D., (1997). Transistor Sizing Issues and Tool for Multi-Threshold CMOS Technology. Design Automation Conf., pp. 409- 414.
[13]. Kuroda, T., Fujita, T., Mita, S., Nagamatsu, T., Yoshioka, Suzuki, K., Sano, F., Norishima, M., Murota, M., Kako, M., Kakumu, M. K. M., and Sakurai, T., (1996). A 0.9- v, 150-mhz, 10-mw, 4 mm 2, 2-d discrete cosine transform core processor with variable threshold-voltage (VT) scheme. IEEE Journal of Solid-State Circuits, Vol. 31, pp. 1770-1779.
[14]. Keshavarzi, A. et al., (1999). Effectiveness of Reverse Body Bias for Lowe Power CMOS Circuits. 8th NASA Symp. VLSI Design, IEEE Press, Piscataway, NJ.
[15]. Tschanz, T. W., Narendra, S., Nair, R., De, D. (2003). Effectiveness of adaptive supply voltage and body ... IEEE Journal of Solid State Circuits, Vol. 38, Issue 5.
[16]. Kim, H. M. et al. (2002). ACM/IEEE DAC.
[17]. Nose, K. et al. (2001). IEEE Custom Integrated Circ. Conf., 93.
[18]. Calhoun, B., & Chandrakasan, A.P. (2003). “Standby Voltage Scaling for Reduced Power," CICC, PP. 639-642, Orlando, FL.
[19]. Fuketa, H., Hashimoto, M., Mitsuyama, Y., and Onoye, T. (2009). Trade-off Analysis Between Timing Error Rate and Power Dissipation for Adaptive Speed Control with Timing Error Prediction. ASP-DAC, pp. 266-271, NJ, USA.
[20]. Das, S., Lee, S., Blaauw, D., Mudge, T., Nam Sung Kim, Flautner, K. (2004). “Razor: Circuit- Level Correction Of Timing Errors For Low-power Operation” Ieee Computer Society Ieee.
[21]. Sato, Toshinori, Kunitake, Yuji, and Fukuoka, (2007). A simple Flip-Flop Circuit for Typical Case Designs for DFM. 8th International Symposium on Quality Electronics Design, PP. 539-544, San Jose, CA, ISQEB'07.
[22]. Sartori, J., and Kumar, R., (2009). Characterizing the Voltage Scaling Limitations of Razor-based Designs. Coordinated Science Laboratory, The University of Illinois at Urbana-Champaign, Champaign, IL, Tech. Rep.
[23]. Blaauw, D., Das S. and Bull D., (2009). Razor II: In situ error detection and Correction for PVT and SER tolerance. IEEE Journal. Solid-State Circuits, Vol. 44, No. 1, pp. 32–48.
[24]. Chede, S., Kulat, K., and Thakare, R., (2010). A Significance of VLSI Techniques for Low Power Real Time Systems. IJCA, Vol. 1, pp. 22.
[25]. Pillai, P., and Shin, K.G. (2001). Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating Systems. Proc. SOSP, pp.89-102.
[26]. Fuket, H. et al., (2009). Adaptive performance Compensation with In-Situ Timing Error prediction for Sub- threshold Circuits. CICC, PP.215 -218.
[27]. Fuketa, H., Hashimoto, M., Mitsuyama, Y., and Onoye, T. (2011). Adaptive Performance Compensation With In-Situ Timing Error Predictive Sensors for Sub-threshold Circuits” Transaction on Very Large Scale Integration (VLSI) Systems IEEE J., Vol. 9, pp. 1 - 11.
[28]. Samanta, R., Venkataraman, G., Shah, N., Hu, J., (2008). Elastic Timing Scheme for Energy-efficient and Robust Performance”, ISQED, pp. 537-542.
[29]. Das S., Pant S., David R., Lee S. and Blaauw, D. (2006). A self tuning DVS processor Using delay- error detection and correction. IEEE J. Solid-State Circuits, Vol. 41, No. 4, pp. 792–804.
[30]. Kunitake, Y., Sato T., and Yasuura H. (2010). A Replacement Strategy for Canary Flip-Flops. PRDC, Vol. 4,pp. 227-228.
[31]. Benton H. Calhoun and Chandrakasan, (2004). Standby Power Reduction Using Dynamic Voltage Scaling and Canary Flip-Flop Structures. ISSC, Vol. 39,pp. 9.
[32]. Fuketa, H. Hashimoto, M. Mitsuyama, Y. Onoye, T., (2009). Adaptive Performance Compensation with In-Situ Timing Error Prediction for Sub threshold Circuits” CICC, pp. 215-218.
[33]. Fuketa, H., Hashimoto, M,. Mitsuyama, Y., and Onoye, T. (2011). Adaptive Performance Compensation With In-Situ Timing Error Predictive Sensors for Sub threshold Circuits. Transaction on Very Large Scale Integration (VLSI) Systems IEEE J., Vol. 9, pp. 1 - 11.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.