References
[1]. Carpi, F., Galbiati, S., & Carpi, A. (2007). Controlled navigation of endoscopic capsules: Concept and preliminary experimental investigations. IEEE Transactions on Biomedical Engineering, 54(11), 2028-2036.
[2]. Cave, D. R., Fleischer, D. E., Leighton, J. A., Faigel, D. O., Heigh, R. I., Sharma, V. K., ... & Lee, M. (2008). A multicenter randomized comparison of the Endocapsule and the Pillcam SB. Gastrointestinal Endoscopy, 68(3), 487- 494.
[3]. Connor, A., Evans, P., Doto, J., Ellis, C., & Martin, D. E. (2009). An oral human drug absorption study to assess the impact of site of delivery on the bioavailability of bevirimat. The Journal of Clinical Pharmacology, 49(5), 606-612.
[4]. Epstein, M. (2009). Ingestible Event Marker System—A Novel, Physiologically-Sized Device Platform for Frequent, Repeated Use. Gastrointestinal Endoscopy, 69(5).
[5]. Forgione, A. (2009). In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives. Surgical Oncology, 18(2), 121-129.
[6]. Goldfarb, N. I., Pizzi, L. T., Fuhr Jr, J. P., Salvador, C., Sikirica, V., Kornbluth, A., & Lewis, B. (2004). Diagnosing Crohn's disease: an economic analysis comparing wireless capsule endoscopy with traditional diagnostic procedures. Disease Management, 7(4), 292-304.
[7]. Gray, H. (2005). Gray's Anatomy. London: Greenwich Editions.
[8]. Meron, G. D. (2000). The development of the swallowable video capsule (M2A). Gastrointestinal Endoscopy, 52(6), 817-819.
[9]. Metzger, Y. C., Adler, S. N., Shitrit, A. B., Koslowsky, B., & Bjarnason, I. (2009). Comparison of a new PillCam™ SB2 video capsule versus the standard PillCam™ SB for detection of small bowel disease. Reports in Medical Imaging, 2(1), 7-11.
[10]. Miftahof, R. N. (2005). The wave phenomena in smooth muscle syncytia. In silico biology, 5(5, 6), 479-498.
[11]. Park, H., Park, S., Yoon, E., Kim, B., Park, J., & Park, S. (2007, April). Paddling based microrobot for capsule endoscopes. In Proceedings of 2007 IEEE International Conference on Robotics and Automation (pp. 3377- 3382). IEEE.
[12]. Rao, S. S., Kuo, B., McCallum, R. W., Chey, W. D., DiBaise, J. K., Hasler, W. L., ... & Semler, J. R. (2009). Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clinical Gastroenterology and Hepatology, 7(5), 537-544.
[13]. Swain, P., & Fritscher-Ravens, A. (2004). Role of video endoscopy in managing small bowel disease. Gut, 53(12), 1866-1875.
[14]. Toennies, J. L., Tortora, G., Simi, M., Valdastri, P., & Webster, R. J. (2010). Swallowable medical devices for diagnosis and surgery: The state of the art. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(7), 1397-1414.
[15]. Valdastri, P., Webster III, R. J., Quaglia, C., Quirini, M., Menciassi, A., & Dario, P. (2009). A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Transactions on Robotics, 25(5), 1047- 1057.
[16]. Wilding, I., Hirst, P., & Connor, A. (2000). Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today, 3(11), 385-392. https://doi.org/10.1016/S1461- 5347(00)00311-4
[17]. Woo, S. H., Kim, T. W., & Cho, J. H. (2010). Stopping mechanism for capsule endoscope using electrical stimulus. Medical & biological engineering & computing, 48(1), 97-102. https://doi.org/10.1007/s11517-009-0553-x
[18]. Woods, S. P., & Constandinou, T. G. (2011, September). Towards a micropositioning system for targeted drug delivery in wireless capsule endoscopy. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 7372- 7375). IEEE.