References
[1]. Almubarak, S., & Wong, P. K. (2011). Long-term clinical
outcome of neonatal EEG findings. Journal of Clinical
Neurophysiology, 28(2), 185-189. http://doi.org/10.1097/
WNP.0b013e3182121731
[2]. Arab, M. R., Suratgar, A. A., Martínez-Hernández, V. M.,
& Rezaei Ashtiani, A. (2010). Electroencephalogram
signals processing for the diagnosis of petit mal and grand
mal epilepsies using an artificial neural network. Journal of
Applied Research and Technology, 8(1), 120-128.
[3]. Gratton, G., Coles, M. G., & Donchin, E. (1983). A new
method for off-line removal of ocular artifact.
Electroencephalography and Clinical Neurophysiology,
55(4), 468-484. https:/ doi.org/10.1016/0013-
4694(83)90135-9
[4]. Holmes, G. L., & Lombroso, C. T. (1993). Prognostic
value of background patterns in the neonatal EEG. Journal
of Clinical Neurophysiology, 10, 323-323.
[5]. Jung, T. P., Makeig, S., Humphries, C., Lee, T. W.,
Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000).
Removing electroen cephalographic artifacts by blind
source separation. Psychophysiology, 37(2), 163-178.
https://doi.org/10.1111/1469-8986.3720163
[6]. Kumar, B. K. (2019). Denoising of EEG signals using wavelets and various thresholding techniques.
International Journal of Electronics Engineering, 11(2),
261-269.
[7]. Kumar, B. K., Prasad, K. V. S. V. R., & Alekhya, D. (2016,
August). Performance comparision of various thresholding
techniques on the removal of ocular artifacts in the EEG
signals. In 2016 International Conference on Inventive
Computation Technologies (ICICT) (Vol. 3, pp. 1-5). IEEE.
https://doi.org/10.1109/INVENTIVE.2016.7830179
[8]. Mathworks. (n.d.). MATLAB for Artificial Intelligence.
Retrieved from https://www.mathworks.com/
[9]. Murugavel, A. M., & Ramakrishnan, S. (2012). Tree
based wavelet transform and DAG SVM for seizure
detection. Signal & Image Processing, 3(1), 115-125.
[10]. Niedermeyer, E., & da Silva, F. L. (2005).
Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields. Lippincott Williams &
Wilkins.
[11]. PhysioNet. (n.d.). The Research Resource for
Complex Physiologic Signals. Retrieved from https://
www.physionet.org/
[12]. Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R.,
Leeb, R., & Pfurtscheller, G. (2007). A fully automated
correction method of EOG artifacts in EEG recordings.
Clinical Neurophysiology, 118(1), 98-104. https://doi.org/
10.1016/j.clinph.2006.09.003
[13]. Thakor, N. V., Xin-Rong, G., Yi-Chun, S., & Hanley, D. F.
(1993). Multiresolution wavelet analysis of evoked
potentials. IEEE Transactions on Biomedical Engineering,
40(11), 1085-1094. http://doi.org/10.1109/10.245625
[14]. Venkataramanan, S., Prabhat, P., Choudhury, S. R.,
Nemade, H. B., & Sahambi, J. S. (2005, January).
Biomedical instrumentation based on electrooculogram
(EOG) signal processing and application to a hospital
alarm system. In Proceedings of 2005 International
Conference on Intelligent Sensing and Information
Processing (pp. 535-540). IEEE. http://doi.org/10.1109
/ICISIP.2005.1529512