References
[1]. Baldwin, R., & Tomiura, E. (2020). Thinking ahead
about the trade impact of COVID-19. Economics in the
Time of COVID-19.
[2]. Bullock, J., Pham, K. H., Lam, C. S. N., & Luengo-Oroz,
M. (2020). Mapping the landscape of artificial
intelligence applications against COVID-19. arXiv
preprint.
[3]. Chamola, V., Hassija, V., Gupta, V., & Guizani, M.
(2020). A comprehensive review of the COVID-19
Pandemic and the role of IoT, Drones, AI, Blockchain, and
5G in managing its impact. IEEE Access, 8, 90225-90265.
https://doi.org/10.1109/ACCESS.2020.2992341
[4]. Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W.,
..., & Liao, J. (2020). Clinical characteristics and
intrauterine vertical transmission potential of COVID-19
infection in nine pregnant women: A retrospective review
of medical records. The Lancet, 395(10226), 809-815.
https://doi.org/10.1016/S0140-6736(20)30360-3
[5]. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y.,
..., & Yu, T. (2020). Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus
pneumonia in Wuhan, China: A descriptive study. The
Lancet, 395(10223), 507-513. https://doi.org/10.1016/
S0140-6736(20)30211-7
[6]. Ding, X. R., Clifton, D., Nan, J. I., Lovell, N. H., Bonato,
P., Chen, W., ..., & Xu, K. (2020). Wearable sensing and
telehealth technology with potential applications in the
coronavirus pandemic. IEEE Reviews in Biomedical
Engineering. https://doi.org/10.1109/RBME.2020.299
2838
[7]. Fang, L., Karakiulakis, G., & Roth, M. (2020). Are
patients with hypertension and diabetes mellitus at
increased risk for COVID-19 infection?. The Lancet:
Respiratory Medicine, 8(4), e21. https://doi.org/10.10
16%2FS2213-2600(20)30116-8
[8]. Gaál, G., Maga, B., & Lukács, A. (2020). Attention unet
based adversarial architectures for chest x-ray lung
segmentation. arXiv preprint.
[9]. Kurama, (2020). Fighting COVID-19 with data and AI:
A Review of active research groups and datasets. Paper
Space Blog. https://blog.paperspace.com/fightingcovid-
19-using-artificial-intelligence-and-data/
[10]. Lavreniuk, M., & Novikov, A. (2018). Overview of machine learning to classify large volumes of satellite
data. System Research & Information Technologies, 1,
52-71.
[11]. Shan, F., Gao, Y., Wang, J., Shi, W., Shi, N., Han, M., ...,
& Shi, Y. (2020). Lung Infection Quantification of Covid-19
in CT Images with Deep Learning. arXiv preprint.
[12]. Surveillances, V. (2020). The epidemiological
characteristics of an outbreak of 2019 novel coronavirus
diseases (COVID-19)-China, 2020. China CDC Weekly,
2(8), 113-122.
[13]. Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., ...,
& Zhao, Y. (2020). Clinical characteristics of 138
hospitalized patients with 2019 novel coronavirus –
infected pneumonia in Wuhan, China. Jama, 323(11),
1061-1069.
[14]. WHO Situation Report 79 (2020). Coronavirus
Disease 2019 (COVID-19). https://www.who.int/docs/
default-source/coronaviruse/situation-reports/2020
0408-sitrep-79-covid-19.pdf?sfvrsn=4796b143_6
[15]. WHO Situation Report 87 (2020). Coronavirus
Disease 2019 (COVID-19). https://www.who.int/docs/
default-source/coronaviruse/situation-reports/20200416-
sitrep-87-covid-19.pdf?sfvrsn=9523115a_2
[16]. WHO (2020). Coronavirus Disease (COVID-19)
Pandemic. https://www.who.int/emergencies/diseases/
novel-coronavirus-2019
[17]. WHO (n.d.). Province/State, Country/Region, Lat,
Long, Date, Confirme, Deaths, Recovered, Active, WHO
Region. https://raw.githubusercontent.com/umang
kejriwal1122/Machine-Learning/master/Data%20Sets/
covid_19_clean_complete.csv
[18]. Wong, S. H., Lui, R. N., & Sung, J. J. (2020). Covid‐19
and the digestive system. Journal of Gastroenterology
and Hepatology, 35(5), 744-748. https://doi.org/10.1111/
jgh.15047
[19]. Zheng, N., Du, S., Wang, J., Zhang, H., Cui, W., Kang,
Z., ... & Ma, M. (2020). Predicting COVID-19 in china using
hybrid AI model. IEEE Transactions on Cybernetics, 50(7),
2891 - 2904. https://doi.org/10.1109/TCYB.2020.2990162