References
[1]. Badekas, E., & Papamarkos, N. (2007). Document binarisation using Kohonen SOM. IET Image Processing, 1(1), 67-84. https://doi.org/10.1049/iet-ipr:20050311
[2]. Baird, H. S. (2004, January). Digital libraries and document image analysis. In 2004, Archiving Conference (pp. 286-288). Society for Imaging Science and Technology.
[3]. Batenburg, K. J., & Sijbers, J. (2009). Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognition, 42(10), 2297-2305. https://doi.org/10.1016/j.patcog.2008.11.027
[4]. Blayvas, I., Bruckstein, A., & Kimmel, R. (2006). Efficient computation of adaptive threshold surfaces for image binarization. Pattern Recognition, 39(1), 89-101. https://doi. org/10.1016/j.patcog.2005.08.011
[5]. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679-698. https://doi.org/10.1109/ TPAMI.1986.4767851
[6]. Casey, R. G., & Lecolinet, E. (1996). A survey of methods and strategies in character segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7), 690-706. https://doi.org/10.1109/34.506792
[7]. Cavalcanti, G. D., Silva, E. F., Zanchettin, C., Bezerra, B. L., Doria, R. C., & Rabelo, J. C. (2006, October). A heuristic binarization algorithm for documents with complex background. In 2006, International Conference on Image Processing (pp. 389-392). IEEE. https://doi.org/10.1109/ICIP. 2006.312475
[8]. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern nd Classification (2 ed.). New York: John Wiley and Sons.
[9]. Feng, M. L., & Tan, Y. P. (2004). Contrast adaptive binarization of low quality document images. IEICE Electronics Express, 1(16), 501-506. https://doi.org/10.1587 /elex.1.501
[10]. Fujisawa, H. (2008). Forty years of research in character and document recognition: An industrial perspective. Pattern Recognition, 41(8), 2435-2446. https://doi.org/10.1016/j.patcog.2008.03.015
[11]. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2004, September). An adaptive binarization technique for low quality historical documents. In International Workshop on Document Analysis Systems (pp. 102-113). Heidelberg, Berlin: Springer. https://doi.org/10.1007/978-3-540-28640- 0_10
[12]. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2006). Adaptive degraded document image binarization. Pattern Recognition, 39(3), 317-327. https://doi.org/10.1016/j.pat cog.2005.09.010
[13]. Gonzalez, R., & Woods, E. (2002). Digital Image Processing (2nd ed.). Upper Saddle River, New Jersey: Prentice Hall.
[14]. Jain, A. (1989). Fundamentals of Digital Image Processing. Upper Saddle River, New Jersey: Prentice Hall.
[15]. Kavallieratou, E., & Antonopoulou, H. (2005, September). Cleaning and enhancing historical document images. In International Conference on Advanced Concepts for Intelligent Vision Systems (pp. 681-688). Heidelberg, Berlin: Springer. https://doi.org/10.1007/11558 484_86
[16]. Kefali, A., Sari, T., & Sellami, M. (2010). Evaluation of several binarization techniques for old Arabic documents images. In the First International Symposium on Modeling and Implementing Complex Systems MISC (Vol. 1, pp. 88- 99).
[17]. Kittler, J., & Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition, 19(1), 41-47. https://doi. org/10.1016/0031-3203(86)90030-0
[18]. Leedham, G., Chen, Y., Takru, K., Tan, J. H. N., & Mian, L. (2003, August). Comparison of some thresholding algorithms for text/background segmentation in difficult document images. In International Conference on Document Analysis and Recognition (ICDAR) (p. 859–864).
[19]. MATLAB. (2011). Image processing toolbox—user guide (R2011b). Math Works. Retrieved from https://www.m athworks.in/help/toolbox/index.html
[20]. Mello, C., Sanchez, A., Oliveira, A., & Lopes, A. (2008). An efficient gray-level thresholding algorithm for historic document images. Journal of Cultural Heritage, 9(2), 109- 116. https://doi.org/10.1016/j.culher.2007.09.004
[21]. Niblack, W. (1986). An Introduction to Digital Image Processing. Englewood Cliffs, New Jersey: Prentice Hall.
[22]. Oh, H. H., Lim, K. T., & Chien, S. I. (2005). An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recognition, 38(12), 2612-2625. https://doi.org/ 10.1016/j.patcog.2004.11.025
[23]. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
[24]. Perantonis, S., Gatos, B., Ntzios, K., Pratikakis, I., Vrettaros, I., Drigas, A., ..., & Kalomirakis, D. (2004). Digitisation processing and recognition of old Greek manuscipts (The D-SCRIBE Project). International Journal Information Theories & Applications, 11(3), 232–240.
[25]. Plamondon, R., & Srihari, S. N. (2000). Online and offline handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. https://doi.org/10.1109/34.824821
[26]. Rosenfeld, A., & Kak, A. C. (1982). Digital Picture Processing. Florida, USA: Academic Press.
[27]. Russ, J. (2007). The Image Processing Handbook (5 ed.). Florida, USA: CRC Press.
[28]. Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. https://doi.org/10.1016/S0031-3203(99)00055-2
[29]. Saxena, L. P. (2014). An effective binarization method for readability improvement of stain-affected (degraded) palm leaf and other types of manuscripts. Current Science, 489-496.
[30]. Saxena, L. P. (2019). Niblack's binarization method and its modifications to real-time applications: A review. Artificial Intelligence Review, 51(4), 673-705. https://doi.org/ 10.1007/s10462-017-9574-2
[31]. Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146-165. https://doi.org/10.1117/1.1631315
[32]. Solihin, Y., & Leedham, C. G. (1999). Integral ratio: A new class of global thresholding techniques for handwriting images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 761-768. https://doi.org/10.1109/34.78 4289
[33]. Sonka, M., Hlavac, V., & Boyle, R. (2007). Image th Processing, Analysis, and Machine Vision (4 ed.). Stamford, USA: Cengage Learning.
[34]. Sparavigna, A. (2009). Digital restoration of ancient papyri. arXiv preprint. Retrieved from https://arxiv.org/abs/ 0903.5045.
[35]. Su, B., Lu, S., & Tan, C. L. (2010, June). Binarization of historical document images using the local maximum and th minimum. In Proceedings of the 9 IAPR International Workshop on Document Analysis Systems (pp. 159-166). https://doi.org/10.1145/1815330.1815351
[36]. Trier, O. D., & Jain, A. K. (1995). Goal-directed evaluation of binarization methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(12), 1191- 1201. https://doi.org/10.1109/34.476511
[37]. Trier, O. D., Jain, A. K., & Taxt, T. (1996). Feature extraction methods for character recognition: A survey. Pattern Recognition, 29(4), 641-662. https://doi.org/10.1 016/0031-3203(95)00118-2
[38]. Trier, O. D., & Taxt, T. (1995). Evaluation of binarization methods for document images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(3), 312-315. https://doi.org/10.1109/34.368197
[39]. Yang, Y., & Yan, H. (2000). An adaptive logical method for binarization of degraded document images. Pattern Recognition, 33(5), 787-807. https://doi.org/10.1016/S003 1-3203(99)00094-1
[40]. Yanowitz, S. D., & Bruckstein, A. M. (1989). A new method for image segmentation. Computer Vision, Graphics, and Image Processing, 46(1), 82-95. https://doi. org/10.1016/S0734-189X(89)80017-9
[41]. Yosef, I. B. (2005). Input sensitive thresholding for ancient Hebrew manuscript. Pattern Recognition Letters, 26(8), 1168-1173. https://doi.org/10.1016/j.patrec.2004.0 7.014