A Discussion on Image Binarization Methods

Lalit Prakash Saxena*
Applied Research Section, Combo Consultancy, Sonebhadra, Uttar Pradesh, India.
Periodicity:October - December'2020
DOI : https://doi.org/10.26634/jip.7.4.17331

Abstract

Image binarization is the process of representing an image pixel in binary format by assigning a value to the pixel as either 0 or 1. Before conversion to binary, the image can be in either gray-scale having pixel value between 0 to 255 or color, i.e., a pixel having value between 0 to 255 for each of the red, green, blue (RGB) channels separately. The method through which this conversion is implemented over an image is called as the binarization method. This paper reviews the methodology, contributions, advantages, and disadvantages of the existing studies on binarization methods. Further, the paper also highlights the problems in image processing with the scope for future enhancements.

Keywords

Document Images, Binarization, Thresholding, Gray-Scale, Image Processing.

How to Cite this Article?

Saxena, L. P. (2020). A Discussion on Image Binarization Methods. i-manager's Journal on Image Processing, 7(4), 36-46. https://doi.org/10.26634/jip.7.4.17331

References

[1]. Badekas, E., & Papamarkos, N. (2007). Document binarisation using Kohonen SOM. IET Image Processing, 1(1), 67-84. https://doi.org/10.1049/iet-ipr:20050311
[2]. Baird, H. S. (2004, January). Digital libraries and document image analysis. In 2004, Archiving Conference (pp. 286-288). Society for Imaging Science and Technology.
[3]. Batenburg, K. J., & Sijbers, J. (2009). Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognition, 42(10), 2297-2305. https://doi.org/10.1016/j.patcog.2008.11.027
[4]. Blayvas, I., Bruckstein, A., & Kimmel, R. (2006). Efficient computation of adaptive threshold surfaces for image binarization. Pattern Recognition, 39(1), 89-101. https://doi. org/10.1016/j.patcog.2005.08.011
[5]. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679-698. https://doi.org/10.1109/ TPAMI.1986.4767851
[6]. Casey, R. G., & Lecolinet, E. (1996). A survey of methods and strategies in character segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7), 690-706. https://doi.org/10.1109/34.506792
[7]. Cavalcanti, G. D., Silva, E. F., Zanchettin, C., Bezerra, B. L., Doria, R. C., & Rabelo, J. C. (2006, October). A heuristic binarization algorithm for documents with complex background. In 2006, International Conference on Image Processing (pp. 389-392). IEEE. https://doi.org/10.1109/ICIP. 2006.312475
[8]. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern nd Classification (2 ed.). New York: John Wiley and Sons.
[9]. Feng, M. L., & Tan, Y. P. (2004). Contrast adaptive binarization of low quality document images. IEICE Electronics Express, 1(16), 501-506. https://doi.org/10.1587 /elex.1.501
[10]. Fujisawa, H. (2008). Forty years of research in character and document recognition: An industrial perspective. Pattern Recognition, 41(8), 2435-2446. https://doi.org/10.1016/j.patcog.2008.03.015
[11]. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2004, September). An adaptive binarization technique for low quality historical documents. In International Workshop on Document Analysis Systems (pp. 102-113). Heidelberg, Berlin: Springer. https://doi.org/10.1007/978-3-540-28640- 0_10
[12]. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2006). Adaptive degraded document image binarization. Pattern Recognition, 39(3), 317-327. https://doi.org/10.1016/j.pat cog.2005.09.010
[13]. Gonzalez, R., & Woods, E. (2002). Digital Image Processing (2nd ed.). Upper Saddle River, New Jersey: Prentice Hall.
[14]. Jain, A. (1989). Fundamentals of Digital Image Processing. Upper Saddle River, New Jersey: Prentice Hall.
[15]. Kavallieratou, E., & Antonopoulou, H. (2005, September). Cleaning and enhancing historical document images. In International Conference on Advanced Concepts for Intelligent Vision Systems (pp. 681-688). Heidelberg, Berlin: Springer. https://doi.org/10.1007/11558 484_86
[16]. Kefali, A., Sari, T., & Sellami, M. (2010). Evaluation of several binarization techniques for old Arabic documents images. In the First International Symposium on Modeling and Implementing Complex Systems MISC (Vol. 1, pp. 88- 99).
[17]. Kittler, J., & Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition, 19(1), 41-47. https://doi. org/10.1016/0031-3203(86)90030-0
[18]. Leedham, G., Chen, Y., Takru, K., Tan, J. H. N., & Mian, L. (2003, August). Comparison of some thresholding algorithms for text/background segmentation in difficult document images. In International Conference on Document Analysis and Recognition (ICDAR) (p. 859–864).
[19]. MATLAB. (2011). Image processing toolbox—user guide (R2011b). Math Works. Retrieved from https://www.m athworks.in/help/toolbox/index.html
[20]. Mello, C., Sanchez, A., Oliveira, A., & Lopes, A. (2008). An efficient gray-level thresholding algorithm for historic document images. Journal of Cultural Heritage, 9(2), 109- 116. https://doi.org/10.1016/j.culher.2007.09.004
[21]. Niblack, W. (1986). An Introduction to Digital Image Processing. Englewood Cliffs, New Jersey: Prentice Hall.
[22]. Oh, H. H., Lim, K. T., & Chien, S. I. (2005). An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recognition, 38(12), 2612-2625. https://doi.org/ 10.1016/j.patcog.2004.11.025
[23]. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
[24]. Perantonis, S., Gatos, B., Ntzios, K., Pratikakis, I., Vrettaros, I., Drigas, A., ..., & Kalomirakis, D. (2004). Digitisation processing and recognition of old Greek manuscipts (The D-SCRIBE Project). International Journal Information Theories & Applications, 11(3), 232–240.
[25]. Plamondon, R., & Srihari, S. N. (2000). Online and offline handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. https://doi.org/10.1109/34.824821
[26]. Rosenfeld, A., & Kak, A. C. (1982). Digital Picture Processing. Florida, USA: Academic Press.
[27]. Russ, J. (2007). The Image Processing Handbook (5 ed.). Florida, USA: CRC Press.
[28]. Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. https://doi.org/10.1016/S0031-3203(99)00055-2
[29]. Saxena, L. P. (2014). An effective binarization method for readability improvement of stain-affected (degraded) palm leaf and other types of manuscripts. Current Science, 489-496.
[30]. Saxena, L. P. (2019). Niblack's binarization method and its modifications to real-time applications: A review. Artificial Intelligence Review, 51(4), 673-705. https://doi.org/ 10.1007/s10462-017-9574-2
[31]. Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146-165. https://doi.org/10.1117/1.1631315
[32]. Solihin, Y., & Leedham, C. G. (1999). Integral ratio: A new class of global thresholding techniques for handwriting images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 761-768. https://doi.org/10.1109/34.78 4289
[33]. Sonka, M., Hlavac, V., & Boyle, R. (2007). Image th Processing, Analysis, and Machine Vision (4 ed.). Stamford, USA: Cengage Learning.
[34]. Sparavigna, A. (2009). Digital restoration of ancient papyri. arXiv preprint. Retrieved from https://arxiv.org/abs/ 0903.5045.
[35]. Su, B., Lu, S., & Tan, C. L. (2010, June). Binarization of historical document images using the local maximum and th minimum. In Proceedings of the 9 IAPR International Workshop on Document Analysis Systems (pp. 159-166). https://doi.org/10.1145/1815330.1815351
[36]. Trier, O. D., & Jain, A. K. (1995). Goal-directed evaluation of binarization methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(12), 1191- 1201. https://doi.org/10.1109/34.476511
[37]. Trier, O. D., Jain, A. K., & Taxt, T. (1996). Feature extraction methods for character recognition: A survey. Pattern Recognition, 29(4), 641-662. https://doi.org/10.1 016/0031-3203(95)00118-2
[38]. Trier, O. D., & Taxt, T. (1995). Evaluation of binarization methods for document images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(3), 312-315. https://doi.org/10.1109/34.368197
[39]. Yang, Y., & Yan, H. (2000). An adaptive logical method for binarization of degraded document images. Pattern Recognition, 33(5), 787-807. https://doi.org/10.1016/S003 1-3203(99)00094-1
[40]. Yanowitz, S. D., & Bruckstein, A. M. (1989). A new method for image segmentation. Computer Vision, Graphics, and Image Processing, 46(1), 82-95. https://doi. org/10.1016/S0734-189X(89)80017-9
[41]. Yosef, I. B. (2005). Input sensitive thresholding for ancient Hebrew manuscript. Pattern Recognition Letters, 26(8), 1168-1173. https://doi.org/10.1016/j.patrec.2004.0 7.014
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.