References
[1]. Abreu, E., Lightstone, M., Mitra, S. K., & Arakawa, K. (1996). A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Transactions on Image Processing, 5(6), 1012-1025. https:// doi.org/10.1109/83.503916
[2]. Badekas, E., & Papamarkos, N. (2007). Document binarisation using Kohonen SOM. IET Image Processing, 1(1), 67-84. https://doi.org/10.1049/iet-ipr:20050311
[3]. Bar, L., Brook, A., Sochen, N., & Kiryati, N. (2005a, October). Color image deblurring with impulsive noise. In International Workshop on Variational, Geometric, and Level Set Methods in Computer Vision (pp. 49-60). Heidelberg, Berlin: Springer. https://doi.org/10.1007/11567 646_5
[4]. Bar, L., Sochen, N., & Kiryati, N. (2005b, April). Image deblurring in the presence of salt-and-pepper noise. In International Conference on Scale-Space Theories in Computer Vision (pp. 107-118). Heidelberg, Berlin: Springer. https://doi.org/10.1007/11408031_10
[5]. Bar-Yosef, I. (2005). Input sensitive thresholding for ancient Hebrew manuscript. Pattern Recognition Letters, 26(8), 1168-1173. https://doi.org/10.1016/j.patrec.2004. 07.014
[6]. Chan, R. H., Ho, C. W., & Nikolova, M. (2005). Salt-andpepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10), 1479-1485. https://doi.org/10. 1109/TIP.2005.852196
[7]. Chen, G., Chen, Q., Zhu, X., & Chen, Y. (2017, October). A study of historical documents denoising. In 2017, 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISPBMEI) (pp. 1-4). IEEE. https://doi.org/10.1109/CISP-BMEI. 2017.8301947
[8]. Chinnasarn, K., Rangsanseri, Y., & Thitimajshima, P. (1998, November). Removing salt-and-pepper noise in text/graphics images. In IEEE Asia-Pacific Conference on Circuits and Systems APCCAS 1998 (pp. 459-462). IEEE. https://doi.org/10.1109/APCCAS.1998.743809
[9]. Gonzalez, R., & Woods, E. (2002). Digital Image nd Processing (2nd ed). Upper Saddle River, New Jersey: Prentice Hall.
[10]. Khaffaf, H., Talib, A., & Salam, R. (2008). Removing salt-and-pepper noise from binary images of engineering drawings. In 19th International Conference on Pattern Recognition, ICPR 2008 (pp. 1-4). IEEE.
[11]. Kim, G., Kim, J. G., Kang, K., & Yoo, W. S. (2019). Image-based quantitative analysis of foxing stains on old printed paper documents. Heritage, 2(3), 2665-2677. https://doi.org/10.3390/heritage2030164
[12]. Kollia, Z., Sarantopoulou, E., Cefalas, A. C., Kobe, S., & Samardzija, Z. (2004). Nanometric size control and treatment of historic paper manuscript and prints with laser light at 157 nm. Applied Physics A, 79(2), 379-382. https:// doi.org/10.1007/s00339-004-2539-8
[13]. Li, J., Li, Y., Luo, Y., Teri, G., Jia, Z., & Fu, P. (2020). th Characterization of an early 20 century Chinese manuscript with foxing stains. BioResources, 15(4), 9212- 9227.
[14]. Liu, C., Szeliski, R., Kang, S. B., Zitnick, C. L., & Freeman, W. T. (2007). Automatic estimation and removal of noise from a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 299-314.
[15]. López-Rubio, E. (2010). Restoration of images corrupted by Gaussian and uniform impulsive noise. Pattern Recognition, 43(5), 1835-1846. https://doi.org/10. 1016/j.patcog.2009.11.017
[16]. Modica, A., Bruno, M., Di Bella, M., Alberghina, M. F., Brai, M., Fontana, D., & Tranchina, L. (2019). Characterization of foxing stains in early twentieth century photographic and paper materials. Natural Product Research, 33(7), 987- 996.
[17]. Pratt, W. (2001). Digital Image Processing: PIKS Inside (3rd ed.). John Wiley & Sons.
[18]. Russ, J. (2007). The image processing handbook (5th ed.). FL, USA: CRC Press.
[19]. Saba, T., Rehman, A., Al-Dhelaan, A., & Al-Rodhaan, M. (2014). Evaluation of current documents image denoising techniques: A comparative study. Applied Artificial Intelligence, 28(9), 879-887. https://doi.org/10.10 80/08839514.2014.954344
[20]. Saxena, L. P. (2014). An effective binarization method for readability improvement of stain-affected (degraded) palm leaf and other types of manuscripts. Current Science, 107(3), 489-496.
[21]. Saxena, L. P. (2019). Niblack's binarization method and its modifications to real-time applications: A review. Artificial Intelligence Review, 51(4), 673-705.
[22]. Singh, B., Chand, V., Mittal, A., & Ghosh, D. (2012). A comparative study of different approaches of noise removal for document images. In Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) (pp. 847-854). Springer, India.
[23]. Szulc, J., Otlewska, A., Ruman, T., Kubiak, K., Karbowska-Berent, J., Kozielec, T., & Gutarowska, B. (2018). Analysis of paper foxing by newly available omics techniques. International Biodeterioration & Biodegradation, 132, 157-165.
[24]. Tappen, M. F., Liu, C., Adelson, E. H., & Freeman, W. T. (2007, June). Learning gaussian conditional random fields for low-level vision. In 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE. https://doi.org/10.1109/CVPR.2007.382979
[25]. Yang, Y., & Yan, H. (2000). An adaptive logical method for binarization of degraded document images. Pattern Recognition, 33(5), 787-807.