References
[1]. American Public Health Association. (2017). Standard
methods for the examination of water and waste water
(23rd ed.) (Standard No. APHA 3120-B). American Public
Health Association, Washington DC.
[2]. Bureau of Indian Standard. (2005). Indian standard
methods of sampling fly ash (Standard No. IS 6491). Bureau
of Indian Standards, New Delhi.
[3]. Bureau of Indian Standard. (2012). Drinking Water
Specification (Standard No. IS 10500). Bureau of Indian
Standards, New Delhi.
[4]. Choi, S. K., Lee, S., Song, Y. K., & Moon, H. S. (2002).
Leaching characteristics of selected Korean fly ashes and
its implications for the groundwater composition near the
ash disposal mound. Fuel, 81(8), 1083-1090. https://doi.
org/10.1016/S00162361(02)00006-6
[5]. EUR - Lex (2002). Council Decision. Retrieved from
https://eurlex.europa.eu/legalcontent/GA/TXT/?uri=celex:3
2003D0033
[6]. European Committee for Standardization. (2004)
Technical specification of Characterization of waste -
Leaching behaviour tests - Up-flow percolation test
(Standard No. CEN 14405). European Committee of
Standardization, Brussels.
[7]. Gong, X., Wu, T., Qiao, Y., & Xu, M. (2010). In situ
leaching of trace elements in a coal ash dump and time
dependence laboratory evaluation. Energy & Fuels, 24(1),
84-90. https://doi.org/10.1021/ef9005115
[8]. Grathwohl, P. (2014). On equilibration of pore water in
column leaching tests. Waste Management, 34(5), 908-
918. https://doi.org/10.1016/j.wasman.2014.02.012
[9]. International Organization for Standardization. (2005).
General requirements for the competence of testing and
calibration laboratories (Standard No. ISO 17025).
International Organization for Standardization, Geneva.
[10]. Kim, A. G. (2005). Leaching methods applied to the
characterization of coal utilization by-products. In Regulation,
Risk, and Reclamation With Coal Combustion By-Products
at Mines: A Technical Interactive Forum (p. 89-96).
[11]. Leiva, C., Rodriguez-Galan, M., Arenas, C., Alonso-
Farinas, B., & Peceno, B. (2018). A mechanical, leaching
and radiological assessment of fired bricks with a high
content of fly ash. Ceramics International, 44(11), 13313-
13319. https://doi.org/10.1016/j.ceramint.2018.04.162
[12]. Lokeshappa, B., & Dikshit, A. K. (2012). Fate of metals
in coal fly ash ponds. International Journal of Environmental
Science and Development, 3(1), 39-43. https://doi.org/
10.1016/j.apcbee.2012.03.007
[13]. Peavy, H. S., Rowe, D. R., & Tchobanoglous, G. (2017).
Environmental Engineering. McGraw Hill Publishers.
[14]. Praharaj, T., Powell, M. A., Hart, B. R., & Tripathy, S.
(2002). Leachability of elements from sub-bituminous coal
fly ash from India. Environment International, 27(8), 609-615.
[15]. Tiwari, M. K., Bajpai, S., Dewangan, U. K., & Tamrakar,
R. K. (2015). Suitability of leaching test methods for fly ash
and slag: A review. Journal of Radiation Research and
Applied Sciences, 8(4), 523-537. https://doi.org/10.
1016/j.jrras.2015.06.003
[16]. Tripathy, A. K., Behera, B., Aishvarya, V., Sheik, A. R.,
Dash, B., Sarangi, C. K., ... & Bhattacharya, I. N. (2019).
Sodium fluoride assisted acid leaching of coal fly ash for
the extraction of alumina. Minerals Engineering, 131, 140-
145. https://doi.org/10.1016/j.mineng.2018.10.019