References
[1]. Alahakoon, C. N. (2006). Identification of physical
problems of major palm leaf manuscripts collections in Sri
Lanka. Journal of the University Librarians Association of Sri
Lanka, 10, 54–65.
[2]. Ardizzone, E., Dindo, H., Maniscalco, U., & Mazzola, G.
(2006, September). Damages of digitized historical images
th as objects for content based applications. In 2006, 14
European Signal Processing Conference (pp. 1-5). IEEE.
[3]. Bar-Yosef, I. (2005). Input sensitive thresholding for
ancient Hebrew manuscript. Pattern Recognition Letters,
26(8), 1168-1173. https://doi.org/10.1016/j.patrec.2004
.07.014
[4]. Battiato, Sebastiano, & Stanco, F. (2006). Digital
Restoration for antique documents. Communications to
Simai Congress. 1, 1-6.
[5]. Brisinello, M., Grbić, R., Stefanovič, D., &Pečkai-
Kovač, R. (2018, September). Optical character
recognition on images with colorful background. In 2018,
IEEE 8th International Conference on Consumer
Electronics- Berlin (ICCE-Berlin), (pp. 1-6). IEEE.
https://doi.org/10.1109/ICCE-Berlin.2018.8576202
[6] Calabretto, S., & Bozzi, A. (1998). The philological
workstation bambi (better access to manuscripts and
browsing of images). Journal of Digital Information, 1(3), 1-
17.
[7]. Chen, Y., & Leedham, G. (2005). Decompose
algorithm for thresholding degraded historical
document images. IEEE Proceedings-Vision, Image and
Signal Processing, 152(6), 702-714. https://doi.org/10.10
49/ip-vis:20045054
[8]. Dobreva, M., & Ikonomov, N. (2004). Digital
preservation and access to cultural and scientific
heritage: Preservation of the kt-digicult-bgproject.
International Journal Information Theories &
Applications,11(3),204–210.
[9]. Dubois, E., & Pathak, A. (2001, April). Reduction of
Bleed-through in Scanned Manuscript Documents. (Vol.
1, pp. 177-180). In PICS.
[10]. Fujisawa, H. (2008). Forty years of research in
character and document recognition an industrial
perspective. Pattern Recognition, 41(8), 2435-2446.
https://doi.org/10.1016/j.patcog.2008.03.015
[11]. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2004,
September). An adaptive binarization technique for low
quality historical documents. In International Workshop
on Document Analysis Systems (pp. 102-113). Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28
640-0_10
[12]. Goltz, D., Attas, M., Young, G., Cloutis, E., &
Bedynski, M. (2010). Assessing stains on historical
documents using hyper spectral imaging. Journal of
Cultural Heritage, 11(1), 19-26. https://doi.org/10.1016/j.
culher.2009.11.003
[13]. Gorman, L., Sammon, M., & Seul, M. (2008).
Practical Algorithms for Image Analysis. Cambridge
University Press, New York, USA.
[14]. Hadjadj, Z., Cheriet, M., Meziane, A., & Cherfa, Y.
(2017). A new efficient binarization method: Application
to degraded historical document images. Signal, Image
and Video Processing, 11(6), 1155-1162. https://doi.org/
10.1007/s11760-017-1070-2
[15]. Jin, L. (2017). Complex impulse noise removal from
color images based on super pixel segmentation. Journal
of Visual Communication and Image Representation,
48, 54-65. https://doi.org/10.1016/j.jvcir.2017.05.012
[16]. Kim, S. J., Deng, F., & Brown, M. S. (2011). Visual
enhancement of old documents with hyper spectral
imaging. Pattern Recognition, 44(7), 1461-1469.
https://doi.org/10.1016/j.patcog.2010.12.019
[17]. Kumar, D. U., Sreekumar, G., & Athvankar, U. (2009).
Traditional writing system in southern India-palm leaf
manuscripts. Design Thoughts, 7, 2-7.
[18]. Leydier, Y., Bourgeois, F., & Emptoz, H. (2004).
Serialized unsupervised classifier for adaptive color
image segmentation: Application to digitized ancient
manuscripts. In Proceedings of 17th International
Conference on Pattern Recognition (ICPR), 1,494–497.
[19]. Leydier, Y., Lebourgeois, F., & Emptoz, H. (2007). Text
search for medieval manuscript images. Pattern
Recognition, 40(12), 3552-3567. https://doi.org/ 10.1016/
j.patcog.2007.04.024
[20]. López-Rubio, E. (2010). Restoration of images
corrupted by Gaussian and Uniform impulsive noise.
Pattern Recognition, 43(5), 1835-1846. https://doi.org/
10.1016/j.patcog.2009.11.017
[21]. Lorena, A. C., Garcia, L. P., Lehmann, J., Souto, M.
C., & Ho, T. K. (2019). How Complex is your classification
problem? A survey on measuring classification
complexity. ACM Computing Surveys (CSUR), 52(5), 1-34.
https://doi.org/10.1145/3347711
[22]. Luo, E., Chan, S. H., & Nguyen, T. Q. (2016). Adaptive
image denoising by mixture adaptation. IEEE Transactions
on Image Processing, 25(10), 4489-4503. https://doi.org
/10.1109/TIP.2016.2590318
[23]. Mello, C., Sanchez, A., Oliveira, A., & Lopes, A.
(2008). An efficient gray-level thresholding algorithm for
historic document images. Journal of Cultural Heritage,
9(2), 109-116. https://doi.org/10.1016/j.culher.2007.09.
004
[24]. Moghaddam, R. F., & Cheriet, M. (2009). RSLDI:
Restoration of single-sided low-quality document
images. Pattern Recognition, 42(12), 3355-3364.
https://doi.org/10.1016/j.patcog.2008.10.021
[25]. Montani, I., Sapin, E., Pahud, A., & Margot, P. (2012).
Enhancement of writings on a damaged medieval
manuscript using ultraviolet imaging. Journal of Cultural
Heritage, 13(2), 226-228. https://doi.org/10.1016/j.
culher.2011.09.002
[26]. Mustafa, W. A., Khairunizam, W., Zunaidi, I., Razlan,
Z. M., & Shahriman, A. B. (2019, June). A comprehensive
review on document image (DIBCO) database. In IOP
Conference Series: Materials Science and Engineering
(Vol. 557, No. 1, p. 012006). IOP Publishing.
[27]. Nagy, G. (2000). Twenty years of document image
analysis in PAMI. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 1, 38-62.
[28]. Nawaz, T., Qazi, K. A., & Ashraf, M. I. (2009).
Performance evaluation of noise removal algorithms for
scanned images. International Journal of Computer
Science and Security, 3(3), 226.
[29]. Nicolas, S., Paquet, T., & Heutte, L. (2003,
November). Digitizing cultural heritage manuscripts: The
bovary project. In Proceedings of the 2003 ACM
Symposium on Document Engineering (pp. 55-57).
[30]. Peratonis, S., Gatos, B., Ntzios, K., Pratikakis,
I.,Vrettaros, I., Drigas, A., Mmanouilidis, C., Kesidis, A., &
Kalomirakis, D. (2004). Digitisation processing and
recognition of old greek manuscripts (thed-scribe
project). International Journal Information Theories &
Applications,11(3), 232–240.
[31]. Ramponi, G., Stanco, F., Dello Russo, W., Pelusi, S., &
Mauro, P. (2005, March). Digital automated restoration of
manuscripts and antique printed books. In Proceedings
of EVA (pp. 764-767).
[32]. Saxena, L. P. (2019). Niblack's binarization method and its modifications to real-time applications: A review. Artificial Intelligence Review, 51(4), 673-705. https://doi.org/10.1007/s10462-017-9574-2
[33]. Sehad, A., Chibani, Y., Hedjam, R., & Cheriet, M.
(2019). Gabor filter-based texture for ancient degraded
document image binarization. Pattern Analysis and
Applications, 22(1), 1-22. https://doi.org/10.1007/s10
044-018-0747-7
[34]. Serra, J. (1982). Image Analysis and Mathematical
Morphology. Academic Press, London.
[35]. Sonka, M., Hlavac, V., & Boyle, R. (2007). Image
Processing, Analysis, and Machine Vision. Thomson-
Engineering.
[36]. Sparavigna, A. (2009). Digital restoration of ancient
papyri. Computer Vision and Pattern Recognition (cs.CV),
1-6.
[37]. Stanco, F., Ramponi, G., & Tenze, L. (2004). A
Method for Improving the Visual Quality of Digitized
Antique Books (Vol. 276, pp. 4-5). In 7th COST.
[38]. Su, B., Lu, S., & Tan, C. L. (2010, June). Binarization of
historical document images using the local maximum
and minimum. In Proceedings of the 9th IAPR International
Workshop on Document Analysis Systems (pp. 159-166).
[39]. Sulaiman, A., Omar, K., & Nasrudin, M. F. (2019).
Degraded historical document binarization: A review on
issues, challenges, techniques, and future directions.
Journal of Imaging, 5(4), 1–25. https://doi.org/10.3390
/jimaging5040048
[40]. Surinta, O., & Chamchong, R. (2008, October).
Image segmentation of historical handwriting from palm
leaf manuscripts. In International Conference on
Intelligent Information Processing (pp. 182-189).
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-
87685-6_23
[41]. Thouin, P. D., & Chang, C. I. (2000). A method for
restoration of low-resolution document images.
International Journal on Document Analysis and
Recognition, 2(4), 200-210. https://doi.org/10.100
7/PL00021526
[42]. Uhlír, Z. (2004). Manuscript digitization and
electronic processing of manuscripts in the czech
national library. International Journal Information
Theories & Applications, 11(3), 257–262.
[43]. Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D.
(2017). Learning k for knn classification. ACM
Transactions on Intelligent Systems and Technology (TIST),
8(3), 1-19.