References
[1]. Andreas, M. (2010). Automatic Speech Recognition
Systems for Evaluating Voice and Speech Disorders in
Head and Neck Cancer. EURASIP Journal on Audio,
Speech and Music Processing, 1-7.
[2]. Ben, G., & Nelson, M. (2001). Speech and Audio Signal
Processing: Processing and Perception of Speech and
Music. John Wiley and Sons, Ltd
[3]. Chandra, E., & Sunitha, C., (2009). A Review on
Speech and Speaker Authentication System Using Voice
Signal Feature Selection and Extraction. IEEE International
Advance Computing Conference, IACC '09, 1341-1346.
[4]. Cui, B., & Xue, T. (2009). Design and Realization of an
Intelligent Access Control System Based on Voice
Recognition. ISECS International Colloquium on
Computing, 2009. CCCM '09, 229-232
[5]. Ibrahim, P., & Srinivos, Y. R. (2010). Speech Recognition
Using HMM with MFCC – An Analysis Using Frequency
Spectral Decomposition Techniques. International
Journal og Signal & Image Processing, 101 – 110.
[ 6 ] . Judith,A.M.(2000).Voice Biometrics.
Communications of the ACM, 49, 66-74.
[7]. Kersarkar, M. P. (2003). Feature Extraction for Speech
Recognition, Seminar Report M. Tech, Bombay
[8]. Kotnik, B.V.D., Kocic, Z., & Harvat, B. (2002). Robust
MFCC Feature Extraction Algorithm Using Efficient Additive
and Convolutional Noise Reduction Procedure. ICSIP
Proceeding, Denver, USA, 445-448.
[9]. Lasse, L.M., & Kasper, W.J. (2005). Speaker
Recognition. Unpublished dissertation courses.
[10]. Ling, F., & Hansen, L.K. (2002). A New Database for
Speaker Recognition. Informatics and Mathematical
Modeling.
[11]. Lupu, C., & Lupu, V. (2007). Multimodal Biometric for
Access Control in an Intelligent Car. 3rd International
Symposium on Computational Intelligence and
Intelligent Informatics, ISCII 2007, Morocco, 261-267
[12]. Malcangi, M. (2009). Robust Speaker Authentication
Based on Combined Speech and Voiceprint Recognition.
Proceedings of AIP Conference.
[13]. Manjot, K.G. (2003). A Viable Technique: Speaker
Recognition.
[14]. Mahesh, P. K., & Shanmukha, S. M. N. (2010).
Biometric Identification System Based on the Fusion of
Palmprint and Speech Signal. International Conference
on Signal and Image Processing, 186-190.
[15]. Md. Rashidul, H., Mustafa, J., & Md. Golam, R.
(2004). Speaker Identification Using Mel Frequency
Cepstral Coefficients. 3rd International Conference on
Electrical & Computer Engineering, 565-568.
[16]. Muda, L., Begam, M., & Elamrazuthi, I., (2010). Voice
Recognition Algorithms Using Mel Frequency Cepstral
Coefficients (MFCC) and Dynamic Time Wrapping (DTW)
Techniques. Journal on Computing, 138-143
[17]. Rabiner, L. R., & Juang, B.H. (1993). Fundamentals of
Speech Recognition, Prentice-Hall, Englewood Cliffs, N.J
[18]. Ross, A., & Jain, A. K. (2001). Information Fusion in
Biometrics. Pattern Recognition Letters, 337-346
[19]. Rozeha, A. R., & Mohd Adib, S. (2008). Security
System Using Biometric Technology: Design and
Implementation of Voice Recognition System. IEEE
International Conference on Computer and
Communication Engineering, Kuala Lumpur, 898-902.
[20]. Saeed, V. V. (2006). Advanced Digital Signal Processing
and Noise Reduction (3rd Ed.). John Wiley and Sons, Ltd.
[21]. Shonda, L. W., & Simon, Y. F. (2003). Optimal Wavelets
for Speech Recognition. Systematic, Cybernetics and
Informatics, 1-4.
[22]. Thomas, F. Q. (2002). Speech Signal Processing –
Principles and Practice. Prentice Hall. PTR, New York.
[23]. Udrea, R.M., & Chiochina, S. (2003). Speech
Enhancement Using Spectral Over-Subtraction and Residual Noise Reduction, IEEE Conference, 165-168.
[24]. Yeldener, S., & Rieser, J.H. (2000). A Background
Noise Reduction Technique Based on Sinusoidal Speech
Coding Systems. IEEE Conference, 1391-1394.