References
[1]. Acharya, S., Rai, D., Rao, K. P. S., Srijith, V. J., & Nithin, K.
(2013). Fatigue detection alarm system. In International
Conference on Multimedia Processing, Communication
and Information Technology-MPCIT.
[2]. Amin, H. U., Malik, A. S., Ahmad, R. F., Badruddin, N.,
Kamel, N., Hussain, M., & Chooi, W. T. (2015). Feature
extraction and classification for EEG signals using wavelet
transform and machine learning techniques. Australasian
Physical & Engineering Sciences in Medicine, 38(1), 139-
149. https://doi.org/10.1007/s13246-015-0333-x
[3]. Bonjyotsna, A., & Roy, S. (2014). Correlation of
drowsiness with electrocardiogram: A review.
International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering, 3(5), 9538-
9544.
[4]. Deepa, T. P., & Reddy, V. (2013). EEG based drowsiness
detection using mobile device for intelligent vehicular
system. International Journal of Engineering Trends and
Technology (IJETT), 6(1), 21-24.
[5]. Hal, B. V. (2013). Real-time stage 1 sleep detection
and warning system using a low-cost EEG headset. Master
Thesis, Grand Valley State University, USA (pp. 1-60).
[6]. Kaplan, S., Guvensan, M. A., Yavuz, A. G., & Karalurt,
Y. (2015). Driver behavior analysis for safe driving: A survey.
IEEE Transactions on Intelligent Transportation Systems,
16(6), 3017-3032. https://doi.org/10.1109/TITS.2015.2 462
084
[7]. Ko, L. W., Lai, W. K., Liang, W. G., Chuang, C. H., Lu, S.
W., Lu, Y. C., Hsiung, T. Y., Wu, H. H., & Lin, C. T. (2015, July).
Single channel wireless EEG device for real-time fatigue
level detection. In 2015, International Joint Conference
on Neural Networks (IJCNN) (pp. 1-5). IEEE. https://doi.org/
10.1109/IJCNN.2015.7280817
[8]. Ma, Y., Chen, B., Li, R., Wang, C., Wang, J., She, Q.,
Luo, Z., & Zhang, Y. (2019). Driving fatigue detection from
EEG using a modified PCANet method. Computational
Intelligence and Neuroscience, 1-9. https://doi.org/10.11
55/2019/4721863
[9]. Min, J., Wang, P., & Hu, J. (2017). Driver fatigue
detection through multiple entropy fusion analysis in an EEG-based system. PLoS One, 12(12). https://doi.org/10.
1371/journal.pone.0188756
[10]. Rawat, S., & Verma, V. K. (2015). A review on sleep
detection using EEG signal. International Journal of
Engineering Trends and Technology (IJETT), 23(6).
https://doi.org/10.14445/22315381/IJETT-V23P255
[11]. Rohit, F., Kulathumani, V., Kavi, R., Elwarfalli, I.,
Kecojevic, V., & Nimbarte, A. (2017). Real-time drowsiness
detection using wearable, lightweight brain sensing
headbands. IET Intelligent Transport Systems, 11(5), 255-
263. https://doi.org/10.1049/iet-its.2016.0183
[12]. Tang, X., Zhou, P., & Wang, P. (2016, July). Real-time
image-based driver fatigue detection and monitoring
th system for monitoring driver vigilance. In 2016, 35
Chinese Control Conference (CCC) (pp. 4188-4193).
IEEE. https://doi.org/10.1109/ChiCC.2016.75540 07
[13]. Wang, H., Dragomir, A., Abbasi, N. I., Li, J., Thakor, N.
V., & Bezerianos, A. (2018). A novel real-time driving
fatigue detection system based on wireless dry EEG.
Cognitive Neurodynamics, 12(4), 365-376. https://doi.
org/10.100 7/s11571-018-9481-5