References
[1]. Abdalla, O. A., Elfaki, A. O., & AlMurtadha, Y. M.
(2014). Optimizing the multilayer feed-forward artificial
neural networks architecture and training parameters
using genetic algorithm. International Journal of
Computer Applications, 96(10), 42-48.
[2]. Aghazadeh, M., & Gharehchopogh, F. S. (2018). A
New Hybrid model of Multi-layer Perceptron Artificial
Neural Network and Genetic Algorithms in Web Design
Management Based on CMS. Journal of AI and Data
Mining, 6(2), 409-415. https://doi.org/10.22044/ja
dm.2017.989
[3]. Arifovic, J., & Gencay, R. (2001). Using genetic algorithms to select architecture of a feed forward
artificial neural network. Physica A: Statistical Mechanics
and its Applications, 289 (3-4), 574-594. https://doi.org/
10.1016/S0378-4371(00)00479-9
[4]. Ashwood, A. J. (2014). Portfolio selection using
artificial intelligence (Doctoral dissertation). Queensland
University of Technology, Australia. Retrieved from
http://eprints.qut.edu.au/66229/
[5]. Bahnsen, A. C., & Gonzalez, A. M. (2011, December).
Evolutionary algorithms for selecting the architecture of a
MLP neural network: A credit scoring case. In 2011, IEEE
11th International Conference on Data Mining
Workshops (pp. 725-732). IEEE. https://doi.org/10.1
109/ICDMW.2011 .80
[6]. Balochian, S., Seidabad, E. A., & Rad, S. Z. (2013).
Neural network optimization by genetic algorithms for the
audio classification to speech and music. International
Journal of Signal Processing, Image Processing and
Pattern Recognition, 6(3), 47-54.
[7]. Batchis, P. (2013). An Evolutionary Algorithm for
Neural Network Learning Using Direct Encoding.
Resource 53, Chinese Digital Library. Retrieved from
https://www.cs.rutgers.edu/~mlittman/courses/ml03/iCM
L03/papers/batchis.pdf
[8]. Brownlee, J. (2016). Deep Learning with Python:
Develop Deep Learning Models on Theano and
Tensorflow using Keras. Machine Learning Mastery.
[9]. Carvalho, A. R., Ramos, F. M., & Chaves, A. A. (2011).
Metaheuristics for the feed forward artificial neural
network (ANN) architecture optimization problem. Neural
Computing and Applications, 20(8), 1273-1284.
https://doi.org/10.1007/s00521-010-0504-3
[10]. Castillo, P. A., Arenas, M. G., Castellano, J. G.,
Cillero, M., Merelo, J. J., Prieto, A., Rivas, V., & Romero, G.
(2001). Function approximation with evolved multilayer
perceptrons. In Proceedings of International Workshop on
Evolutionary Computation (IWEC'2000)(pp. 209-224).
[11]. Castillo, P. A., Carpio, J., Merelo, J. J., Prieto, A.,
Rivas, V., & Romero, G. (2000). Evolving multilayer
perceptrons. Neural Processing Letters, 12(2), 115-128.
https://doi.org/10.1023/A:1009684907680
[12].Chiroma, H., Abdulkareem, S., Abubakar, A., &
Herawan, T. (2017). Neural networks optimization through
genetic algorithm searches: A review. Applied
Mathematics & Information Sciences, 11(6), 1543-1564.
https://doi.org/10.18576/amis%2F110602
[13]. Chow, T. T., Lin, Z., Song, C. L., & Zhang, G. Q. (2001).
Applying neural network and genetic algorithm in chiller
system optimization. In Proceedings of the Seventh
International Building Performance Simulation
Association, Rio de Janeiro, Brazil, 1059-1066.
[14]. Dorofki, M., Elshafie, A.H., Jaafar, O., Karim, O.A., &
Mastura, S. (2012).Comparison of artificial neural network
transfer functions abilities to simulate extreme runoff data.
International Conference on Environment, Energy and
Biotechnology IPCBEE (vol.33, pp.39-44).
[15]. Eng, M. H., Li, Y., Wang, Q. G., & Lee, T. H. (2008,
December). Forecast forex with ANN using fundamental
data. In 2008 International Conference on Information
Management, Innovation Management and Industrial
Engineering (Vol. 1, pp. 279-282). IEEE. https://doi.org/
10.1109/ICIII.2008.302
[16]. Ettaouil, M., Lazaar, M., & Ghanou, Y. (2013).
Architecture optimization model for the multilayer
perceptron and clustering. Journal of Theoretical &
Applied Information Technology, 47(1), 64-72.
[17]. Fakharudin, A. S., Sulaiman, M. N., Salihon, J., &
Zainol, N. (2013, August). Implementing artificial neural
networks and genetic algorithms to solve modeling and
optimization of biogas production. In Proceedings of the
4th International Conference on Computing and
Informatics (ICOCI) (Vol. 30,pp.121-126).
[18]. Ferentinos, K. P. (2005). Biological engineering
applications of feedforward neural networks designed
and parameterized by genetic algorithms. Neural
Networks, 18(7), 934-950. https://doi.org/10.1016/
j.neunet.2005.03.010
[19]. Fischer, M. M., & Leung, Y. (1998). A geneticalgorithms
based evolutionary computational neural
network for modelling spatial interaction data neural
network for modelling spatial interaction data. The Annals
of Regional Science, 32(3), 437-458. https://doi.org/10.1007/s001680050082
[20]. Ganatra, A., Kosta, Y. P., Panchal, G., & Gajjar, C.
(2011). Initial classification through back propagation in a
neural network following optimization through GA to
evaluate the fitness of an algorithm. International Journal
of Computer Science and Information Technology, 3(1),
98-116.
[21]. Géron, A. (2019). Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems (2nd Ed). O'Reilly
Media.
[22]. Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. United States :
Addison-Wesley Longman Publishing Co., Inc.
[23]. Gorunescu, F. (2011). Data Mining: Concepts, Models
and Techniques (Vol. 12). Springer Science & Business
Media.
[24]. Güler, İ., Polat, H., & Ergün, U. (2005). Combining
neural network and genetic algorithm for prediction of lung
sounds. Journal of Medical Systems, 29(3), 217-231.
https://doi.org/10.1007/s10916-005-5182-9
[25]. Hassan, A. K. A., & Jasim, S. S. (2010). Integrating
neural network with genetic algorithms for the classification
plant disease. Engineering and Technology Journal, 28(4),
686-702.
[26]. Idrissi, M. A. J., Ramchoun, H., Ghanou, Y., & Ettaouil,
M. (2016, May). Genetic algorithm for neural network
architecture optimization. In 2016, 3rd International
Conference on Logistics Operations Management (GOL)
(pp. 1-4). IEEE. https://doi.org/10.1109/GOL.2016.773 1699
[27]. Igodan, C. E. (2019).Optimization of a feed-forward
neural network topologies and parameters. (Unpublished
predoctoral thesis).
[28]. Jayaraj, V., & Raman, N. S. (2016). A genetic algorithm
optimized multilayer perceptron for software defect
prediction. International Journal of Advanced Technology
in Engineering and Science, 4(2), 132-141.
[29]. Karsoliya, S. (2012). Approximating number of hidden
layer neurons in multiple hidden layer BPNN architecture.
International Journal of Engineering Trends and
Technology, 3(6), 714-717.
[30]. Kokko, T. (2013). Neural networks for computationally
expensive problems (Postgraduate thesis), Department of
Mathematical Information Technology, University of
Jyväskylä, Finland
[31]. Kumari, V. S. R., & Rajesh, K. P. (2015). Optimization of
multi-layer perceptron neural network using genetic
algorithm for arrhythmia classification. Communications,
3(5), 150-157. https://doi.org/10.11648/j.com.201503
05.21
[32]. Ludermir, T. B., Yamazaki, A., & Zanchettin, C. (2006).
An optimization methodology for neural network weights
and architectures. IEEE Transactions on Neural Networks,
17(6), 1452-1459. https://doi.org/10.1109/TNN.2006.8
81047
[33]. Manavazhahan, M. (2017). A study of activation
functions for neural networks (Computer Science and
Computer Engineering Undergraduate Honours Thesis),
University of Arkansas, Fayetteville.
[34]. Negnevitsky, M. (2005). Artificial Intelligence: A Guide
to Intelligent Systems. Pearson Education.
[35]. Nienhold, D., Schwab, K., Dornberger, R., & Hanne, T.
(2015, December). Effects of weight initialization in a feedforward
neural network for classification using a modified
genetic algorithm. In 2015, 3rd International Symposium on
Computational and Business Intelligence (ISCBI) (pp. 6-12).
IEEE. https://doi.org/10.1109/ISCBI.20 15.9
[36]. Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D.
(2011). Behaviour analysis of multilayer perceptrons with
multiple hidden neurons and hidden layers. International
Journal of Computer Theory and Engineering, 3(2), 332-
337.
[37]. Pater, L. (2016). Application of artificial neural
networks and genetic algorithms for crude fractional
distillation process modeling. Neural and Evolutionary
Computing, 1-9.
[38]. Plagianakos, V. P., Magoulas, G. D., & Vrahatis, M. N.
(2006). Evolutionary training of hardware realizable
multilayer perceptrons. Neural Computing & Applications,
15(1), 33-40. https://doi.org/10.1007/s005 21-005-0005-y
[39]. Rahman, M. M., & Setu, T. A. (2015). An
implementation for combining neural networks and
genetic algorithms. International Journal of Computer
Science and Telecommunications (IJCST), 6(3), 218-222.
[40]. Rao, R. S., & Gupta, M. (2014). 9 Design pattern
detection by multilayer neural genetic algorithm,
International Journal of Computer Science and Network,
3(1), 9-14. https://doi.org/10.1.1.466.1544
[41]. Sagar, G. V. R., & Chalam, D. S. V. (2011). Evolutionary
algorithm for connection weights in artificial neural
networks. International Journal of Electronics and
Communication Engineering, 4(5), 517-525.
[42]. Senhaji, K., Ramchoun, H., & Ettaouil, M. (2017,
October). Multilayer perceptron: NSGA II for a new multiobjective
learning method for training and model
complexity. In First International Conference on Real Time
Intelligent Systems (pp. 154-167). Springer, Cham.
https://doi.org/10.1007/978-3-319-91337-7_15
[43]. Sewsynker-Sukai, Y., Faloye, F., & Kana, E. B. G. (2017).
Artificial neural networks: an efficient tool for modelling and
optimization of biofuel production (a mini review).
Biotechnology & Biotechnological Equipment, 31(2), 221-
235. https://doi.org/10.1080/13102818. 2016.1269616
[44]. Sivanandam, S. N., & Deepa, S. N. (2006).
Introduction to Neural Networks using MATLAB 6.0. Tata
McGraw-Hill Education.
[45]. Svozil, D., Kvasnicka, V., & Pospichal, J. (1997).
Introduction to multi-layer feed-forward neural networks.
Chemometrics and Intelligent Laboratory Systems, 39(1),
43-62. https://doi.org/10.1016/S0169-7439(97)00061-0
[46]. Tan, P-N., Steinbach, M., & Kumar, V. (2006).
Introduction to Data Mining. Pearson Addison-Wesley.
Retrieved from https://www-users.cs.umn.edu/~kumar
001/dmbook/sol.pdf
[47]. Taşkıran, M., Çam, Z. G., & Kahraman, N. (2015). An
efficient method to optimize multi-layer perceptron for
classification of human activities. International Journal of
Computing, Communications & Instrumentation
Engineering (IJCCIE), 2(2), 191-195. https://doi.org/
10.15242/IJCCIE.ER1215104
[48]. Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S.
M., & Morgan, R. E. (2015, December). On predicting the
optimal number of hidden nodes. In 2015 International
Conference on Computational Science and
Computational Intelligence (CSCI) (pp. 565-570). IEEE.
https://doi.org/10.1109/CSCI.2015.33
[49]. Urban, S. (2017). Neural network architectures and
activation functions: A gaussian process approach.
Thesis.
[50]. Zhou, J., & Li, L. (2004, September). Using genetic
algorithm trained perceptrons with adaptive structure for
the detection of premature ventricular contraction. In
Computers in Cardiology (pp. 353-356). IEEE.
https://doi.org/10.1109/CIC.2004.1442945