References
[1]. Baby, A. (2015). Improved honey bee inspired load balancing of tasks with position updation. International Journal of Research in Applied Science & Engineering Technology (IJRASET), 3(IV), 1157-1163.
[2]. Bhure, K., Titarmare, N. (2020). A study on:- cloud computing, virtual private cloud, load balancing. International Journal of Engineering and Creative Science, 3(2), 47-52.
[3]. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-616. https://doi.org/10.1016/j.future.2008.12. 001
[4]. Chakraborty, S., & Khan, A. K. (2013). A Study of Load Distribution Algorithms In Distributed Scheduling. International Journal of Research in Engineering and Technology, 2(2), 37-40. https://doi.org/10.15623/ijret. 2013.0214007
[5]. Choudhary, A., & Rathi, R. (2015). An approach on dynamic semi-distributed load balancing algorithm for cloud computing system. International Journal of Scientific & Engineering Research, 6(6), 406-411.
[6]. Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). A genetic algorithm (GA) based load balancing strategy for cloud computing. Procedia Technology, 10, 340-347.
[7]. Deepa, T., & Cheelu, D. (2018). A Comparative study of static and dynamic load balancing algorithms in cloud computing. International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017) (pp. 3375-3378).
[8]. Dhakal, S., Hayat, M. M., Pezoa, J. E., Yang, C., & Bader, D. A. (2007). Dynamic load balancing in distributed systems in the presence of delays: A regeneration-theory approach. IEEE transactions on parallel and distributed systems, 18(4), 485-497. https://doi.org/10.1109/TPDS. 2007.1009
[9]. Domanal, S.G., & Reddy, G.R. (2013). Load balancing in cloud computingusing modified throttled algorithm. 2013 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), 1-5.
[10]. Fang, Y., Wang, F., & Ge, J. (2010, October). A task scheduling algorithm based on load balancing in cloud computing. In International Conference on Web Information Systems and Mining (pp. 271-277). Springer, Berlin, Heidelberg.
[11]. Feng, J., Liu, Z., Wu, C., & Ji, Y. (2018). Mobile edge computing for the Internet of vehicles: Offloading framework and job scheduling. IEEE Vehicular Technology Magazine, 14(1), 28-36.
[12]. Fiandrino, C., Allio, N., Kliazovich, D., Giaccone, P., & Bouvry, P. (2019). Profiling performance of application partitioning for wearable devices in mobile cloud and fog computing. IEEE Access, 7, 12156-12166.
[13]. Gawali, M. B., & Shinde, S. K. (2018). Task scheduling and resource allocation in cloud computing using a heuristic approach. Journal of Cloud Computing, 7(1), 1- 16.
[14]. Hawilo, H., Jammal, M., & Shami, A. (2019). Network function virtualization-aware orchestrator for service function chaining placement in the cloud. IEEE Journal on Selected Areas in Communications, 37(3), 643-655.
[15]. Kapoor, S., & Dabas, C. (2015, August). Cluster based load balancing in cloud computing. In 2015, Eighth International Conference on Contemporary Computing (IC3) (pp. 76-81). IEEE.
[16]. Kashyap, D., & Viradiya, J. (2014). A survey of various load balancing algorithms in cloud computing. International Journal of Scientific & Technology Research, 3(11), 115-119.
[17]. Khandve, T., Talekar, M., & Dhiwar, S. (2015). Security and load balancing in cloud computing. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 4(10), 3871-3874.
[18]. Lakshmanan, G. T., Rabinovich, Y. G., & Schloss, R. J. (2013). U.S. Patent No. 8,479,216. Washington, DC: U.S Patent and Trademark Office.
[19]. Li, C., Zhou, X., Sun, M., Lu, K., Zhou, J., Zhuang, H., & Dai, D. (2014, December). DLBS: Decentralized load balancing scheme for event-driven cloud frameworks. In th 2014, 20 IEEE International Conference on Parallel and Distributed Systems (ICPADS) (pp. 853-858). IEEE.
[20]. Liu, H., Liu, S., Meng, X., Yang, C., & Zhang, Y. (2010, May). LBVS: A load balancing strategy for virtual storage. In 2010, International Conference on Service Sciences (pp. 257-262). IEEE.
[21]. Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J. R., & Greenberg, A. (2011).Join-Idle-Queue: A novel load balancing algorithm for dynamically scalable web services. Performance Evaluation, 68(11), 1056-1071. https://doi.org/10.1016/j.peva.2011.07.015
[22]. Meng, S., Wang, Y., Jiao, L., Miao, Z., & Sun, K. (2018). Hierarchical evolutionary game based dynamic cloudlet selection and bandwidth allocation for mobile cloud computing environment. IET Communications, 13(1), 16-25.
[23]. Mishra, R., & Jaiswal, A. (2012). Ant colony optimization: A solution of load balancing in cloud. International Journal of Web & Semantic Technology, 3(2), 33-50.
[24]. Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2923-2960.
[25]. Mohanty, R., Behera, H. S., Patwari, K., Dash, M., & Prasanna, M. L. (2011). Priority Based Dynamic Round Robin (PBDRR) algorithm with intelligent time slice for soft real time systems. International Journal of Advanced Computer Science and Applications (IJACSA), 2(2), 46-50.
[26]. Mondal, B., Dasgupta, K., & Dutta, P. (2012). Load balancing in cloud computing using stochastic hill climbing - a soft computing approach. Procedia Technology, 4, 783-789.
[27]. Ning, Z., Kong, X., Xia, F., Hou, W., & Wang, X. (2018). Green and sustainable cloud of things: Enabling collaborative edge computing. IEEE Communications Magazine, 57(1), 72-78.
[28]. Pasha, N., Agarwal, A., & Rastogi, R. (2014). Round robin approach for VM load balancing algorithm in cloud computing environment. International Journal of Advanced Research in Computer Science and Software Engineering, 4(5), 34-39.
[29]. Paya, A., & Marinescu, D. C. (2015). Energy-aware load balancing and application scaling for the cloud ecosystem. IEEE Transactions on Cloud Computing, 5(1), 15-27.
[30]. Sharma, H., & Sekhon, G. S. (2017). Load balancing in cloud using enhanced genetic algorithm. International Journal of Innovations & Advancement in Computer Science IJIACS, 6(1), 13-19.
[31]. Vaidhya, C. (2016). An approach for processor utilization in master slave environment. In Proceedings of International Conference on Advanced Material Technologies (ICAMT).
[32]. Vaidya, C. D., & Chandak, M. B. (2012, November). Efficient parallel process migration algorithm using statistical approach. In 2012 Fourth International Conference on Computational Intelligence and Communication Networks (pp. 525-529). IEEE.
[33]. Vaidya, C., Khobragade, P., & Golghate, A. (2016). Data Leakage Detection and Security in Cloud Computing. GRD Journals-Global Research Development Journal for Engineering, 1(12), 137-140.
[34]. Vaidya, C., Nampalliwar, A., Nampalliwar, K., Thakkar, R., & Bhagat, S. (2018). Statistical approach for load distribution in decentralized cloud computing, Helix, 8(5), 3884-3887. https://doi.org/10.29042/2018-3884- 3887
[35]. Vaidya, C., Saide, S., & Chadawar, S. (2016). Data leakage detection and dependable storage service. IJSTE International Journal of Science Technology & Engineering, 2 (10), 694-701.
[36]. Wang, C., Feng, C., & Cheng, J. (2017, January). Randomized load balancing with a helper. In 2017 International Conference on Computing, Networking and Communications (ICNC) (pp. 518-524). IEEE.
[37]. Xiao, Z., Song, W., & Chen, Q. (2012). Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1107-1117.
[38]. Zhang, Y., Chang, R., & Townend, P. (2019). Guest editor's introduction: special section on virtualization and services for cloud-based application systems. IEEE Transactions on Services Computing, 12(1), 88-90.