References
[1]. Alfred, J. (1925). Elements of physical biology. Baltimore, London: Williams and Wilkins.
[2]. Cushing, J. M. (1977). Integro-Differential equations and delay models in population dynamics. Verlag, Heidelberg:
Springer.
[3]. Freedman, H. I. (1980). Deterministic mathematical models in population ecology. New York: Marcel Dekker
Incorporated.
[4]. Kapur, J. N. (1988). Mathematical Modeling. New Delhi: Wiley-Eastern Limited.
[5]. Kapur, J. N. (1985). Mathematical models in biology and medicine. New Delhi: Affiliated East-West Press.
[6]. May, R. M. (1973). Stability and complexity in model Eco-Systems. (Vol. 1). Princeton: Princeton University Press.
[7]. Narayan, L. K., & Rao, K. K. (2016). Stability Analysis of a Three Species Syn-Ecological Model with Prey-Predator and
Amensalism. Bulleten of Calcutta Mathematical Society, 108(1), 63-76.
[8]. Narayan, L. K., & Rao, K. K. (2017). Dynamical System of Ammensal Relationship of Human's on Plants and Birds with Time
Delay. Bulletin of Calcutta Mathematical Society, 109(6), 485-500.
[9]. Narayan, L. K., & Rao, K. K. (2017). Stability Analysis of Three Species Food Chain Model with Ammensalism and
Mutualism. In Proceedings of the 11th International Conference MSAST 2017 (IMBIC) Kolkata, 6, 125-135.
[10]. Paparao A. V., & Gamini, N. V. S. R. C. M. (2018). Dynamical Behaviour of Prey Predators Model with Time Delay.
International Journal of Mathematics And its Applications, 6(3), 27-37.
[11]. Paparao, A. V., & Narayan, K. L. (2017). Dynamics of a prey predator and competitor model with time delay.
International Journal of Ecology & Development, 32(1), 75-86.
[12]. Paparao, A. V., & Narayan, K. L. (2017). A prey, predator and a competitor to the predator model with time delay.
International Journal of Research in Science & Engineering, 27-38.
[13]. Paparao, A. V., Narayan. K. L., & Rao, K. K. (2019). Amensalism Model: A Mathematical Study. International Journal of
Ecological Economics & Statistics (IJEES), 40(3), 75-87.
[14]. Rao, V. S. H., & Rao, P. R. S. (2009). Dynamic models and control of biological systems. Verlag, New York: Springer.
[15]. Voltera, V. (1931). Leçons sur la théorie mathématique de la Lutte pour la vie (Lessons on the Mathematical Theory of
Struggle for Life). Paris: Gauthier Villars.