References
[1]. Alfred, J. (1925). Elements of Physical Biology. Williams and Wilkins.
[2]. Braun, M. (1978). Differential Equations and their Applications- Applied Mathematical Science. Springer.
[3]. Colinvaux, P. (1986). Ecology. John Wiley and Sons Inc.
[4]. Cushing, J. M. (1977). Integro-Differential equations and delay models in population dynamics. Lecture Notes in
Biomathematics, (Vol. 20). Springer-Verlag.
[5]. Freedman, H. I. (1980). Deterministic Mathematical Models in Population Ecology (Vol. 57). Marcel Dekker
Incorporated.
[6]. Gopalaswamy, K. (1992). Mathematics and Its Applications Stability and Oscillations in Delay Differential Equations of
Population Dynamics. Kluwer Academic Publishers (pp. 5-74).
[7]. Kapur, J. N. (1985). Mathematical Models in Biology and Medicine. Affiliated East-West Press.
[8]. Kapur, J. N. (1988). Mathematical Modeling. Wiley-Eatern.
[9]. Karuna, B. N. R., Narayan, K. L., & Reddy, B. R. (2015). A mathematical study of an infectious disease model with time
delay in CTL response. Global Journal of Pure and Applied Mathematics, 11(2), 110-114.
[10]. Kuang, Y. (Ed.). (1993). Delay Differential Equations: With Applications in Population Dynamics. Academic Press.
[11]. MacDonald, N. (1978). Time Lags in Biological Models. Springer-Verlag.
[12]. May, R. M. (1973). Stability and Complexity in Model Eco-Systems. Princeton University Press.
[13]. Murray, J. D. (2007). Mathematical Biology: I. An Introduction (Vol. 17). Springer Science & Business Media.
[14]. Paparao A. V., &. Gamini, N. (2018). Dynamical behaviour of prey predators model with time delay. International
Journal of Mathematics And its Applications, 6(3), 27-37.
[15]. Paparao, A. V., & Narayan, K. L. (2015). Dynamics of three species ecological model with time-delay in prey and
predator. Journal of Calcutta Mathematical society, 11(2), 111-136.
[16]. Paparao, A. V., & Narayan, K. L. (2017a). A prey, predator and a competitor to the predator model with time delay.
International Journal of Research in Science & Engineering, 27-38.
[17]. Paparao, A. V., & Narayan, K. L. (2017b). Optimal harvesting of prey in three species ecological model with a time
delay on prey and predator. Research Journal of Science and Technology, 9(3), 368-376. https://doi.org/10.5958/2349-
2988.2017.00064.X
[18]. Paparao, A V., & Narayan, K. L. (2017c). Dynamics of a prey predator and competitor model with time delay.
International Journal of Ecology & Development, 32(1), 75-86.
[19]. Paparao, A. V., Narayan. K. L., & Rao, K. K. (2019). Amensalism model: A mathematical study. International Journal of
Ecological Economics & Statistics (IJEES), 40(3), 75-87.
[20]. Paparao, A.V., & Gamini, N. (2019). Stability analysis of a time delay three species ecological model. International
Journal of Recent Technology and Engineering (IJRTE), 7(6), 839-845.
[21]. Ranjith Kumar, G., Lakshmi Narayan, K., & Ravindra Reddy, B. (2006). Stability and Hop bifurcation analysis of SIR
epidemic model with time delay. Equilibrium, 1, 2.
[22]. Rao, V. S. H., & Rao, P. R. S. (2009). Dynamic Models and Control of Biological Systems. Springer Science & Business
Media.
[23]. Reddy, K. S. (2013). Some mathematical aspects of ecological multiple prey-predator systems. (Doctorate Dissertation), Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, India.
[24]. Simmons, G. F. (1974). Differential Equations with Applications and Historical notes. Tata McGraw-Hill.
[25]. Volterra, V. (1931). Le conssen La Theirie Mathematique De La Leitte Pou Lavie. Gauthier-Villars, Paris.