References
[1]. Bilen, K., Cetin, M., Gul, H., & Balta, T. (2009). The
investigation of groove geometry effect on heat transfer for
internally grooved tubes. Applied Thermal Engineering,
29(4), 753-761. https://doi.org/10.1016/j.applthermaleng.
2008.04.008
[2]. Ceylan, K., & Kelbaliyev, G. (2003). The roughness
effects on friction and heat transfer in the fully developed
turbulent flow in pipes. Applied Thermal Engineering, 23(5),
557-570. https://doi.org/10.1016/S1359-4311(02)00225-9
[3]. Chaube, A., Sahoo, P. K., & Solanki, S. C. (2006).
Analysis of heat transfer augmentation and flow
characteristics due to rib roughness over absorber plate of
a solar air heater. Renewable Energy, 31(3), 317-331.
https://doi.org/10.1016/j.renene.2005.01.012
[4]. Dalle Donne, M., & Meyer, L. (1977). Turbulent
convective heat transfer from rough surfaces with twodimensional
rectangular ribs. International Journal of Heat
and Mass Transfer, 20(6), 583-620. https://doi.org/10.1016/
0017-9310(77)90047-3
[5]. Eiamsa-ard, S., & Promvonge, P. (2008). Numerical
study on heat transfer of turbulent channel flow over
periodic grooves. International Communications in Heat
and Mass Transfer, 35(7), 844-852. https://doi.org/10.1016/
j.icheatmasstransfer.2008.03.008
[6]. Fluent (2005). Fluent 6.3. User's Guide. Lebanon, NH:
Fluent Inc.
[7]. Incropera F., Dewitt, P. D. (1996). Introduction to heat
transfer (3rd ed.). John Wiley & Sons Inc.
[8]. Jaurker, A. R., Saini, J. S., & Gandhi, B. K. (2006). Heat
transfer and friction characteristics of rectangular solar air
heater duct using rib-grooved artificial roughness. Solar
Energy, 80(8), 895-907. https://doi.org/10.1016/j.solener. 2005.08.006
[9]. Kim, K. Y., & Lee, Y. M. (2007). Design optimization of
internal cooling passage with V-shaped ribs. Numerical
Heat Transfer, Part A: Applications, 51(11), 1103-1118.
https://doi.org/10.1080/10407780601112860
[10]. Kiml, R., Magda, A., Mochizuki, S., & Murata, A. (2004).
Rib-induced secondary flow effects on local circumferential
heat transfer distribution inside a circular rib-roughened
tube. International Journal of Heat and Mass Transfer, 47(6-
7), 1403-1412. https://doi.org/10.1016/j.ijheatmasstransfer
.2003.09.026
[11]. Launder, B. E., & Spalding, D. B. (1972). Mathematical
Models of Turbulence, London, NY: Academic Press.
[12]. Lorenz, S., Mukomilow, D., & Leiner, W. (1995).
Distribution of the heat transfer coefficient in a channel with
periodic transverse grooves. Experimental Thermal and
Fluid Science, 11(3), 234-242. https://doi.org/10.1016/08
94-1777(95)00055-Q
[13]. Luo, D. D., Leung, C. W., Chan, T. L., & Wong, W. O.
(2005). Flow and forced-convection characteristics of
turbulent flow through parallel plates with periodic
transverse ribs. Numerical Heat Transfer, Part A:
Applications, 48(1), 43-58. https://doi.org/10.1080/104077
80590929829
[14]. Ramadhan, A. A., Al Anii, Y. T., & Shareef, A. J. (2013).
Groove geometry effects on turbulent heat transfer and
fluid flow. Heat and Mass Transfer, 49(2), 185-195.
https://doi.org/10.1007/s00231-012-1076-9
[15]. San, J. Y., & Huang, W. C. (2006). Heat transfer
enhancement of transverse ribs in circular tubes with
consideration of entrance effect. International Journal of
Heat and Mass Transfer, 49(17-18), 2965-2971. https://doi.
org/10.1016/j.ijheatmasstransfer.2006.01.046
[16]. Sparrow, E. M., Koram, K. K., & Charmchi, M. (1980).
Heat transfer and pressure drop characteristics induced by
a slat blockage in a circular tube. Journal of Heat Transfer,
102(1), 64–70. https://doi.org/10.1115/1.3244250
[17]. SundÉn, A. S. B. (2000). Numerical simulation of
turbulent convective heat transfer in square ribbed ducts.
Numerical Heat Transfer, Part A: Applications, 38(1), 67-88.
https://doi.org/10.1080/10407780050134974
[18]. Tatsumi, K., Iwai, H., Inaoka, K., & Suzuki, K. (2003).
Numerical analysis for heat transfer characteristics of an
oblique discrete rib mounted in a square duct. Numerical
Heat Transfer, Part A: Applications, 44(8), 811-831. https://
doi.org/10.1080/716100527
[19]. Webb, R. L., Eckert, E. R. G., & Goldstein, R. J. (1971).
Heat transfer and friction in tubes with repeated-rib
roughness. International Journal of Heat and Mass Transfer,
14(4), 601-617. https://doi.org/10.1016/0017-9310(71)900
09-3
[20]. Yang, Y. T., & Hwang, C. W. (2004). Numerical
calculations of heat transfer and friction characteristics in
rectangular ducts with slit and solid ribs mounted on one
wall. Numerical Heat Transfer, Part A: Applications, 45(4),
363-375. https://doi.org/10.1080/1040780390244452