References
[1]. Almseidin, M., Alzubi, M., Kovacs, S., & Alkasassbeh, M. (2017, September). Evaluation of machine learning algorithms for intrusion detection system. In 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) (pp. 000277-000282). IEEE. https:// doi.org/10.1109/SISY.2017.8080566
[2]. Anwar, S., Mohamad Zain, J., Zolkipli, M. F., Inayat, Z., Khan, S., Anthony, B., & Chang, V. (2017). From intrusion detection to an intrusion response system: Fundamentals, requirements, and future directions. Algorithms, 10(2), 1-24.
[3]. Haq, N. F., Onik, A. R., Hridoy, M. A. K., Rafni, M., Shah, F. M., & Farid, D. M. (2015). Application of machine learning approaches in intrusion detection system: A survey. IJARAIInternational Journal of Advanced Research in Artificial Intelligence, 4(3), 9-18.
[4]. He, H. (2018). AutoGluon vs. XGBoost — Will AutoML Replace Data Scientists? Towards Data Science. Retrieved from https://towardsdatascience.com/autogluon-vsx gboost-will-automl-replace-data-scientists-dc 1220010102
[5]. Hindy, H., Brosset, D., Bayne, E., Seeam, A., Tachtatzis, C., Atkinson, R., & Bellekens, X. (2018). A taxonomy and survey of intrusion detection system design techniques, network threats and datasets. IEEE Access, 4, 1-28. Retrieved from https://arxiv.org/pdf/1806.03517.pdf
[6]. Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., & Anwar, S. (2016). Intrusion response systems: Foundations, design, and challenges. Journal of Network and Computer Applications, 62, 53-74. https://doi.org/10.1016/ j.jnca.2015.12.006
[7]. Lee, B., Amaresh, S., Green, C., & Engels, D. (2018). Comparative study of deep learning models for network intrusion detection. SMU Data Science Review, 1(1), 1-13.
[8]. NSL-KDD Data Set. (n.d.). University of New Brunswick. Retrieved from https://www.unb.ca/cic/datasets/nsl.html
[9]. Patel, K. K., & Buddhadev, B. V. (2014). Machine learning based research for network intrusion detection: A state-of-the-art. International Journal of Information and Network Security (IJINS), 3(3), 31-50.
[10]. Ren, J., Guo, J., Qian, W., Yuan, H., Hao, X., & Jingjing, H. (2019). Building an effective intrusion detection system by using hybrid data optimization based on machine learning algorithms. Security and Communication Networks, 2019. https://doi.org/10.1155/2019/7130868
[11]. Sekhar, C. H., & Rao, K. V. (2019, May). A study: Machine learning and deep learning approaches for intrusion detection system. In International Conference on Computer Networks and Inventive Communication Technologies (pp. 845-849). Springer, Cham. https://doi.org/10.1007/978-3-030-37051-0_94
[12]. Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954-21961.