Variable Control Charts Based on Pareto – Rayleigh Distribution

I. Narasimha Rao *, M. S. Ravikumar**, R. R. L. Kantam ***
* Online Tutor Course Hero Pvt Ltd., Rajahmundry, Andhra Pradesh, India.
** Department of Community Medicine, Konaseema Institute of Medical Sciences & Research Foundation/ General Hospital, Andhra Pradesh, India.
*** Department of Statistics, Acharya Nagarjuna University, Guntur-Andhra Pradesh, India.
Periodicity:October - December'2019
DOI : https://doi.org/10.26634/jmat.8.4.17100

Abstract

A special case of the well-known T – X family of distributions proposed by Alzaatreh et al. (2012) called Pareto – Rayleigh (P – R) distribution is considered. Control limits chart for averages and range of samples were drawn from Pareto – Rayleigh Distribution. The variable control chart limits for mean and range of samples are drawn from Pareto – Rayleigh distribution and is constructed by using Skewness Corrected (SC) control chart technique based on the Moments, Bowley's, Kelly's, and Moor's coefficient of skewness. The results have been illustrated with an example.

Keywords

T – X Family, P – R Distribution, Skewness Correction, Control Charts, Control Limits.

How to Cite this Article?

Rao, I. N., Ravikumar, M. S., and Kantam, R. R. L. (2019). Variable Control Charts Based on Pareto – Rayleigh Distribution. i-manager's Journal on Mathematics, 8(4), 32-40. https://doi.org/10.26634/jmat.8.4.17100

References

[1]. Alzaatreh, A., Famoye, F., & Lee, C. (2012). Gamma-Pareto distribution and its applications. Journal of Modern Applied Statistical Methods, 11(1), 78-94. https://doi.org/10.22237/jmasm/1335845160
[2]. Boyapati, S. R., & Kantam, R. R. L. (2012a). Extreme value charts and analysis of means based on half logistic distribution. International Journal of Quality & Reliability Management, 29(5), 501-511. https://doi.org/10.1108/02656711211230490
[3]. Boyapati, S. R., & Kantam, R. R. L. (2012b). Mean and range charts for skewed distributions – a comparison based on half logistic distribution. Pakistan Journal of Statistics, 28(4), 437-444.
[4]. Chan, L. K., & Cui, H. J. (2003). Skewness correction X and R charts for skewed distributions. Naval Research Logistics (NRL), 50(6), 555-573. https://doi.org/10.1002/nav.10077
[5]. Edgeman, R. L. (1989). Inverse Gaussian control charts. Australian Journal of Statistics, 31(1), 78-84. https://doi.org/10. 1111/j.1467-842X.1989.tb00500.x
[6]. Kantam, R. R. L. & Priya, M. Ch. (2010). Extreme order statistics- control charts. ANU Journal of Physical Sciences. 2(1), 48-55.
[7]. Kantam, R. R. L., & Priya, M. Ch. (2011). Time Control Charts Using Order Statistics. Inter Stat.
[8]. Kantam, R. R. L., Rao, A. V., & Rao, G. S. (2006). Control charts for the log-logistic distribution. Economic Quality Control, 21(1), 77-86. https://doi.org/10.1515/EQC.2006.77
[9]. Kantam, R. R. L., & Sriram, B. (2001). Variable control charts based on Gamma distribution. IAPQR Transactions, 26(2), 63- 78.
[10]. Montgomery, D. C. (2007). Introduction to Statistical Quality Control (6 Ed.). John Wiley & Sons.
[11]. Rao, G. S., & Kantam, R. R. L. (2010). Acceptance sampling plans from truncated life tests based on the log-logistic distributions for percentiles. Economic Quality Control, 25(2), 153-167.
[12]. Rao, R. S., & Kantam, R. R. L. (2008). Variable Control Charts for Process Mean with Reference to Double Exponential Distribution. Acta Ciencia Indica, 34(4), 1925-1930.
[13]. Rao, R. S., Kantam, R. R. L., & Prasad, G. (2015). Modified Maximum Likelihood Estimation in Pareto-Rayleigh distribution. In Conference Proceedings of National Seminar on Recent Developments in Applied Statistics Golden Research Thoughts (pp. 140-152).
[14]. Rao, R. S., Mamidi, P. L., & Kumar, M. R. (2016). Skewness Corrected Control charts for two Inverted Models. Journal of Chemical and Pharmaceutical Sciences, 51 - 55.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.