References
(1). Eleyan, A. (2017). Simple and novel approach for
image representation with application to face
recognition. International Journal of Intelligent Systems
and Applications in Engineering, 5(3), 89-93.
(2). Eleyan, A., & Demirel, H. (2011). Co-occurrence
matrix and its statistical features as a new approach for
face recognition. Turkish Journal of Electrical Engineering
& Computer Sciences, 19(1), 97-107. https://doi.org/
10.3906/elk-0906-27
(3). Giraddi, S., Pujari, J., & Seeri, S. (2015). Role of GLCM
features in identifying abnormalities in the retinal images.
International Journal of Image, Graphics and Signal
Processing, 7(6), 45-51. https://doi.org/10.5815/
ijigsp.2015.06.06
(4). Kaldera, H. N. T. K., Gunasekara, S. R., &
Dissanayake, M. B. (2019, March). Brain tumor
classification and segmentation using faster R-CNN. In
2019 Advances in Science and Engineering Technology
International Conferences (ASET) (pp. 1-6). IEEE.
https://doi.org/10.1109/ICASET.2019.8714263
(5). Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L.
(2013). Image texture feature extraction using GLCM
approach. International Journal of Scientific and
Research Publications, 3(5), 1-5.
(6). Mohsen, H., El-Dahshan, E. S. A., El-Horbaty, E. S. M., &
Salem, A. B. M. (2018). Classification using deep learning
neural networks for brain tumors. Future Computing and
Informatics Journal, 3(1), 68-71. https://doi.org/10.1016
/j.fcij.2017.12.001
(7). Othman, M. F. B., Abdullah, N. B., & Kamal, N. F. B.
(2011, April). MRI brain classification using support vector
machine. In 2011 Fourth International Conference on
Modeling, Simulation and Applied Optimization (pp. 1-4).
IEEE. https://doi.org/10.1109/ICMSAO.2011.5775605
(8). Pathak, B., & Barooah, D. (2013). Texture analysis
based on the gray-level co-occurrence matrix
considering possible orientations. International Journal of
Advanced Research in Electrical, Electronics and
Instrumentation Engineering, 2(9), 4206-4212.
(9). Shree, N. V., & Kumar, T. N. R. (2018). Identification
and classification of brain tumor MRI images with feature
extraction using DWT and probabilistic neural network.
Brain Informatics, 5(1), 23-30. https://doi.org/10.10
07/s40708-017-0075-5
(10). Sompong, C., & Wongthanavasu, S. (2016, July).
Brain tumor segmentation using cellular automata-based
th fuzzy c-means. In 2016 13 International Joint
Conference on Computer Science and Software
Engineering (JCSSE) (pp. 1-6). IEEE. https://doi.org/
10.1109/JCSSE.2016.7748902