References
[1]. AI Index. (n.d.). Lexico. Retrieved from https://english.
oxforddictionaries.com/artificial%20intelligence
[2]. Autor, D. H., Dorn, D., & Hanson, G. H. (2015).
Untangling trade and technology: Evidence from local
labour markets. The Economic Journal, 125 (584), 621-646.
[3]. Balakrishnan, P. S., Cooper, M. C., Jacob, V. S., & Lewis,
P. A. (1996). Comparative performance of the FSCL neural
net and K-means algorithm for market segmentation.
European Journal of Operational Research, 93(2), 346-
357. https://doi.org/10.1016/0377-2217(96)00046-X
[4]. Casabayó, M., Agell, N., & Sánchez-Hernández, G.
(2015). Improved market segmentation by fuzzifying crisp
clusters: A case study of the energy market in Spain. Expert
Systems with Applications, 42 (3), 1637-1643. https://doi.
org/10.1016/j.eswa.2014.09.044
[5]. Cespedes, F. V. (1994). Industrial marketing: Managing new requirements. Mit Sloan Management Review, 35(3),
45.
[6]. Chen, H., & Zimbra, D. (2010). AI and opinion mining.
IEEE Intelligent Systems, 25(3), 74-80.
[7]. Coussement, K., & Van den Poel, D. (2008). Churn
prediction in subscription services: An application of
support vector machines while comparing two parameterselection
techniques. Expert Systems with Applications,
34(1), 313-327.
[8]. Courville, A., Goodfellow, I., Bengio, Y., & Bengio, Y.
(2016). Deep Learning (Vol. 1). Cambridge: MIT Press.
[9]. Eggel, T., & Reinhold, M. (2014). Second generation
recommendation engines in a SME B2B context: A case
study. In 13th Internation Science-to-Bussiness Marketting
Conference, Winterthur.
[10]. Florez-Lopez, R., & Ramon-Jeronimo, J. M. (2009).
Marketing segmentation through machine learning
models: An approach based on customer relationship
management and customer profitability accounting.
Social Science Computer Review, 27(1), 96-117.
https://doi.org/10.1177%2F0894439308321592
[11]. Ghose, T. K., & Tran, T. T. (2010, May). A dynamic
pricing approach in e-commerce based on multiple
purchase attributes. In Canadian Conference on Artificial
Intelligence (pp. 111-122). Berlin, Heidelberg: Springer.
[12]. Huang, B., Kechadi, M. T., & Buckley, B. (2012).
Customer churn prediction in telecommunications. Expert
Systems with Applications, 39(1), 1414-1425. https://doi.
org/10.1016/j.eswa.2011.08.024
[13]. Huang, J. J., Tzeng, G. H., & Ong, C. S. (2007).
Marketing segmentation using support vector clustering.
Expert Systems with Applications, 32(2), 313-317. https://
doi.org/10.1016/j.eswa.2005.11.028
[14]. Hülsmann, M., Borscheid, D., Friedrich, C. M., & Reith,
D. (2012). General sales forecast models for automobile
markets and their analysis. Transactions on Machine
Learning and Data Mining, 5(2), 65-86
[15]. Järvinen, J., & Taiminen, H. (2016). Harnessing
marketing automation for B2B content marketing. Industrial
Marketing Management, 54, 164-175.
[16]. Martínez, A., Schmuck, C., Pereverzyev Jr, S., Pirker,
C., & Haltmeier, M. (2020). A machine learning framework
for customer purchase prediction in the non-contractual
setting. European Journal of Operational Research, 281(3),
588-596.
[17]. Morin, C. (2011). Neuromarketing: The new science of
consumer behavior. Society, 48(2), 131-135. https://doi.
org/10.1007/s12115-010-9408-1
[18]. Ono, C., Kurokawa, M., Motomura, Y., & Asoh, H.
(2007, July). A context-aware movie preference model
using a Bayesian network for recommendation and
promotion. In International Conference on User Modeling
(pp. 247-257). Springer, Berlin, Heidelberg.
[19]. Paschen, J., Wilson, M., & Ferreira, J. J. (2020).
Collaborative intelligence: How human and artificial
intelligence create value along the B2B sales funnel.
Business Horizons. https://doi.org/10.1016/j.bushor.2020.
01.003
[20]. Perakakis, E., Mastorakis, G., & Kopanakis, I. (2019).
Social media monitoring: An Innovative Intelligent
Approach. Designs, 3(2), 24-36. https://doi.org/10.3390/
designs3020024
[21]. Rafiei, M. H., & Adeli, H. (2016). A novel machine
learning model for estimation of sale prices of real estate
units. Journal of Construction Engineering and
Management, 142(2).
[22]. Raju, C. V. L., Narahari, Y., & Ravikumar, K. (2003,
June). Reinforcement learning applications in dynamic
pricing of retail markets. In EEE International Conference on
E-Commerce, 2003 (CEC 2003) (pp. 339-346). IEEE. https://
doi.org/10.1109/COEC.2003.1210269
[23]. Ren, S., Chan, H. L., & Siqin, T. (2019). Demand
forecasting in retail operations for fashionable products:
methods, practices, and real case study. Annals of
Operations Research, 1-17. https://doi.org/10.1007/
s10479-019-03148-8
[24]. Rosienkiewicz, M. (2019, September). Accuracy
assessment of artificial intelligence-based hybrid models
for spare parts demand forecasting in mining industry. In
International Conference on Information Systems
Architecture and Technology (pp. 176-187). Springer, Cham.
[25]. In: Dey N., Mahalle P., Shafi P., Kimabahune V.,
Hassanien A. (eds) Internet of Things, Smart Computing and
Technology: A Roadmap Ahead. Studies in Systems,
Decision and Control, vol 266 (pp.57-80). Springer, Cham.
https://doi.org/10.1007/978-3-030-39047-1_3 1:32.
[26]. Sharma, S. K., & Sharma, V. (2012). Comparative
analysis of machine learning techniques in sale
forecasting. International Journal of Computer
Applications, 53(6).
[27]. Syam, N., & Sharma, A. (2018). Waiting for a sales
renaissance in the fourth industrial revolution: Machine
learning and artificial intelligence in sales research and
practice. Industrial Marketing Management, 69, 135-146.
[28]. Wang, Q. F., Xu, M., & Hussain, A. (2019). Large-scale
ensemble model for customer churn prediction in search
ads. Cognitive Computation, 11(2), 262-270
[29]. Yeo, J., Kim, S., Koh, E., Hwang, S. W., & Lipka, N.
(2016, April). Browsing2purchase: Online customer model
for sales forecasting in an e-commerce site. In
Proceedings of the 25th International Conference
Companion on World Wide Web (pp. 133-134).
https://doi.org/10.1145/ 2872518. 2889394
[30]. Zhang, J., & Cheng, C. (2008). Day-ahead electricity
price forecasting using artificial intelligence. In 2008 IEEE
Canada Electric Power Conference, Vancouver, BC (pp. 1-
5).
[31]. Žliobaite, I., Bakker, J., & Pechenizkiy, M. (2009,
December). Towards context aware food sales prediction.
In 2009 IEEE International Conference on Data Mining
Workshops (pp. 94-99). IEEE. https://doi.org/10.1109/
ICDMW.2009.60