References
[1]. Alvarez, L., Lions, P. L., & Morel, J. M. (1992). Image
selective smoothing and edge detection by nonlinear
diffusion. II. SIAM Journal on Numerical Analysis, 29 (3), 845-
866. https://doi.org/10.1137/0729052
[2]. Buades, A., Coll, B., & Morel, J. M. (2005). A review of
image denoising algorithms, with a new one. Multiscale
Modeling & Simulation, 4(2), 490-530. https://doi.org/
10.1137/040616024
[3]. Chang, S. G., Yu, B., & Vetterli, M. (2000a). Adaptive
wavelet thresholding for image denoising and
compression. IEEE Transactions on Image Processing, 9(9), 1532-1546. https://doi.org/10.1109/83.862633
[4]. Chang, S. G., Yu, B., & Vetterli, M. (2000b). Spatially
adaptive wavelet thresholding with context modeling for
image denoising. IEEE Transactions on Image Processing,
9(9), 1522-1531. https://doi.org/10.1109/83.862630
[5]. Chen, Y., Vemuri, B. C., & Wang, L. (2000). Image
denoising and segmentation via nonlinear diffusion.
Computers & Mathematics with Applications, 39(5-6),
131-149. https://doi.org/10.1016/S0898-1221(00)
00050-X
[6]. Deng, G., & Cahill, L. W. (1993, October). An
adaptive Gaussian filter for noise reduction and edge
detection. In 1993 IEEE Conference Record Nuclear
S c i e n c e S y m p o s i u m a n d M e d i c a l I m a g i n g
Conference (pp. 1615-1619). IEEE. https://doi.org/
10.1109/nssmic.1993.373563
[7]. Deng, L., Zhu, H., Yang, Z., & Li, Y. (2019). Hessian
matrix-based fourth-order anisotropic diffusion filter for
image denoising. Optics & Laser Technology, 110, 184-
190. https://doi.org/10.1016/j.optlastec.2018.08.043
[8]. Fu, S., Ruan, Q., Wang, W., & Chen, J. (2006,
August). Region-based shock-diffusion equation for
adaptive image enhancement. In International
Workshop on Intelligent Computing in Pattern Analysis
and Synthesis (pp. 387-395). Springer, Berlin,
Heidelberg. https://doi.org/ 10.1007/11821045_41
[9]. Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2004). Image
enhancement and denoising by complex diffusion
processes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(8), 1020-1036. https://
doi.org/10.1109/TPAMI.2004.47
[10]. Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2002).
For ward-and-backward diffusion processes for
adaptive image enhancement and denoising. IEEE
Transactions on Image Processing, 11(7), 689-703.
https://doi.org/10.1109/ TIP.2002.800883
[11]. Hajiaboli, M. R. (2009, January). A self-governing
hybrid model for noise removal. In Pacific-Rim
Symposium on Image and Video Technology (pp. 295-
305). Springer, Berlin, Heidelberg. https://doi.org/
10.1007/978-3-540-92957-4_26
[12]. Jansen, M., & Bultheel, A. (2001). Empirical bayes
approach to improve wavelet thresholding for image
noise reduction. Journal of the American Statistical
Association, 96(454), 629-639. https://doi.org/10.1198/
016214 501753168307
[13]. Jiang, X. (2011). Iterative truncated arithmetic
mean filter and its properties. IEEE Transactions on
Image Processing, 21(4), 1537-1547. https://doi.org/
10.1109/ TIP.2011.2172805
[14]. Liu, T., & Xiang, Z. (2013). Image restoration
combining the second-order and fourth-order PDEs.
Mathematical Problems in Engineering, 1–7. https://
doi.org/10.1155/2013/743891
[15]. Lysaker, M., Lundervold, A., & Tai, X. C. (2003).
Noise removal using fourth-order partial differential
equation with applications to medical magnetic
resonance images in space and time. IEEE Transactions
on Image Processing, 12(12), 1579-1590. https://
doi.org/10.1109/TIP.2003. 819229
[16]. Perona, P., & Malik, J. (1990). Scale-space and
edge detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12(7), 629 - 639. https://doi.org/10.1109/34.56205
[17]. Pitas, I., & Venetsanopoulos, A. N. (1990). Median
filters. In Nonlinear Digital Filters (vol. 84, pp. 63-116),
Boston, MA: Springer. https://doi.org/10.1007/978-1-
4757-6017-0_4
[18]. Rafsanjani, H. K., Sedaaghi, M. H., & Saryazdi, S.
(2016). Efficient diffusion coefficient for image
denoising. Computers & Mathematics with
Applications, 72(4), 893-903. https://doi.org/10.
1016/j.camwa.2016.06.005
[19]. Rajan, J., Kannan, K., & Kaimal, M. R. (2008). An
improved hybrid model for molecular image denoising.
Journal of Mathematical Imaging and Vision, 31(1), 73-
79. https://doi.org/10.1007/s10851-008-0067-4
[20]. Rudin, L. I., Osher, S., & Fatemi, E. (1992).
Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1-4),
259-268. https://doi.org/10.1016/0167-2789(92)90242-F
[21]. Senel, H. G., Peters, R. A., & Dawant, B. (2002).
Topological median filters. IEEE Transactions on Image
processing, 11(2), 89-104. https://doi.org/10.1109/
83.98 2817
[22]. Tebini, S., Mbarki, Z., Seddik, H., & Braiek, E. B.
(2016a). Rapid and efficient image restoration
technique based on new adaptive anisotropic diffusion
function. Digital Signal Processing, 48, 201-215.
https://doi.org/10.1016/j.dsp.2015.09.013
[23]. Tebini, S., Seddik, H., & Braiek, E. B. (2016b). An
advanced and adaptive mathematical function for an
efficient anisotropic image filtering. Computers &
Mathematics with Applications, 72(5), 1369-1385.
https://doi.org/10.1016/j.camwa.2016.07.004
[24]. Wang, H., Wang, Y., & Ren, W. (2012). Image
denoising using anisotropic second and fourth order
diffusions based on gradient vector convolution.
Computer Science and Information Systems, 9(4),
1493-1511. https://doi.org/10.2298/CSIS120219060W
[25]. Wang, Y., & Jia, Y. (2008, December). External
force for active contours: gradient vector convolution.
In Pacific Rim International Conference on Artificial
Intelligence (pp. 466-472). Springer, Berlin, Heidelberg.
https://doi.org/ 10.1007/978-3-540-89197-0_43
[26]. Wei, G. W. (1999). Generalized Perona-Malik
equation for image restoration. IEEE Signal Processing
Letters, 6(7), 165-167. https://doi.org/10.1109/
97.769359
[27]. Whitaker, R. T., & Pizer, S. M. (1993). A multi-scale
approach to nonuniform diffusion. CVGIP: Image
Understanding, 57(1), 99-110. https://doi.org/10.1006/
ciun.1993.1006
[28]. You, Y. L., & Kaveh, M. (2000). Fourth-order partial
differential equations for noise removal. IEEE
Transactions on Image Processing, 9(10), 1723-1730.
https://doi.org/10.1109/83.869184
[29]. Yu, H., & Chua, C. S. (2006). GVF-based
anisotropic diffusion models. IEEE Transactions on
Image Processing, 15(6), 1517-1524. https://doi.org/
10.1109/TIP.2006.871143
[30]. Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2012,
September). A comprehensive evaluation of full
reference image quality assessment algorithms. In
2012 19th IEEE International Conference on Image
Processing (pp. 1477-1480). IEEE. https://doi.org/
10.1109/ICIP.2012.6467150
[31]. Zhong, P., & Wang, R. (2014). Jointly learning the
hybrid CRF and MLR model for simultaneous denoising
and classification of hyperspectral imagery. IEEE
Transactions on Neural Networks and Learning Systems,
25(7), 1319-1334. https://doi.org/10.1109/TNNLS.20
13.2293061
[32]. Zhong, S., & Cherkassky, V. (2000, September). Image denoising using wavelet thresholding and model selection. In Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101) (Vol. 3, pp. 262-265). IEEE.