References
[1]. Allred, D. J., Yoo, H., Krishnan, V., Huang, W., &
Anderson, D. V. (2005). LMS adaptive filters using distributed
arithmetic for high throughput. IEEE Transactions on Circuits
and Systems I: Regular Papers, 52(7), 1327-1337. https://
doi.org/10.1109/TCSI.2005.851731
[2]. Chen, K. H., & Chiueh, T. D. (2006). A low-power digitbased
reconfigurable FIR filter. IEEE Transactions on Circuits
and Systems II: Express Briefs, 53(8), 617-621. https:// doi.org/10.1109/TCSII.2006.875373
[3]. Hatai, I., Chakrabarti, I., & Banerjee, S. (2013, May).
Reconfigurable architecture of a RRC FIR interpolator for
multi-standard digital up converter. In 2013 IEEE
International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (pp. 247-251). IEEE.
https://doi.org/10.1109/ IPDPSW.2013.188
[4]. Khan, M. T., & Shaik, R. A. (2018). Optimal complexity
architectures for pipelined distributed arithmetic-based
LMS adaptive filter. IEEE Transactions on Circuits and
Systems I: Regular Papers, 66(2), 630-642. https://
doi.org/10.1109/TCSI.2018.2867291
[5]. Kumm, M., Möller, K., & Zipf, P. (2013, July). Dynamically
reconfigurable FIR filter architectures with fast
reconfiguration. In 2013 8th International Workshop on
Reconfigurable and Communication-Centric Systems-on-
Chip (ReCoSoC) (pp. 1-8). IEEE. https://doi.org/10.1109
/ReCoSoC.2013.6581517
[6]. Lou, X., Yu, Y. J., & Meher, P. K. (2016). Analysis and
optimization of product-accumulation section for efficient
implementation of FIR filters. IEEE Transactions on Circuits
and Systems I: Regular Papers, 63(10), 1701-1713. https://
doi.org/10.1109/TCSI.2016.2587105
[7]. Meher, P. K. (2006). Hardware-efficient systolization of
DA-based calculation of finite digital convolution. IEEE
Transactions on Circuits and Systems II: Express Briefs, 53(8),
707-711. https://doi.org/10.1109/TCSII.2006.877277
[8]. Meher, P. K. (2009). New approach to look-up-table
design and memory-based realization of FIR digital filter.
IEEE Transactions on Circuits and Systems I: Regular Papers,
57(3), 592-603. https://doi.org/10.1109/TCSI.2009.2026683
[9]. Meher, P. K., & Park, S. Y. (2011, October). Highthroughput
pipelined realization of adaptive FIR filter based
on distributed arithmetic. In 2011 IEEE/IFIP 19th International
Conference on VLSI and System-on-Chip (pp. 428-433).
IEEE. https://doi.org/10.1109/VLSISoC.2011.6081621
[10]. Meher, P. K., Chandrasekaran, S., & Amira, A. (2008).
FPGA realization of FIR filters by efficient and flexible
systolization using distributed arithmetic. IEEE Transactions
on Signal Processing, 56(7), 3009-3017. https://doi.org/
10.1109/TSP.2007.914926
[11]. Ming, L., & Chao, Y. (2012, March). The multiplexed
structure of multi-channel FIR filter and its resources
evaluation. In 2012 International Conference on
Computer Distributed Control and Intelligent
Environmental Monitoring (pp. 764-768). IEEE. https://
doi.org/10.1109/ CDCIEM.2012.187
[12]. Nagaraju, N., & Ramesh, S. M. (2019).
Implementation of high speed and area efficient MAC unit
for industrial applications. Cluster Computing, 22(2), 4511-
4517. https://doi.org/10.1007/s10586-018-2060-z
[13]. Ozalevli, E., Huang, W., Hasler, P. E., & Anderson, D. V.
(2008). A reconfigurable mixed-signal VLSI implementation
of distributed arithmetic used for finite-impulse response
filtering. IEEE Transactions on Circuits and Systems I: Regular
Papers, 55(2), 510-521. https://doi.org/10.1109/TCSI.20
07.913735
[14]. Peled, A., & Liu, B. (1974). A new hardware realization
of digital filters. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 22(6), 456-462. https://doi.org/10.1
109/TASSP.1974.116 26 19
[15]. Raj, P. L. J., & Vigneswaran, T. (2016, March). A
paradigm of distributed arithmetic (DA) approaches for
digital FIR filter. In 2016 International Conference on
Electrical, Electronics, and Optimization Techniques
(ICEEOT) (pp. 4668-4672). IEEE. https://doi.org/10.1109/
ICEEOT.2016.7755606
[16]. Venkatachalam, S., & Ko, S. B. (2018). Approximate
sum-of-products designs based on distributed arithmetic.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 26(8), 1604-1608. https://doi.org/10.1109/TV
SI.2018.2818980
[17]. White, S. A. (1989). Applications of distributed
arithmetic to digital signal processing: A tutorial review. IEEE
ASSP Magazine, 6(3), 4-19. https://doi.org/10.1109/53.2
9648
[18]. Yoo, H., & Anderson, D. V. (2005, March). Hardwareefficient
distributed arithmetic architecture for high-order
digital filters. In Proceedings. (ICASSP'05). IEEE International
Conference on Acoustics, Speech, and Signal Processing,
2005. (Vol. 5, pp. v-125). IEEE. https://doi.org/10.1109
/ICASSP. 2005.1416256