References
[1]. Abd-Ellatif, S. A. M. (2013). Optimizing sliver quality using
Artificial Neural Networks in ring spinning. Alexandria
Engineering Journal, 52(4), 637-642. https://doi.org/10. 1016/j.aej.2013.09.007
[2]. Abril, H. C., Millan, M. S., Torres, Y., & Navarro, R. (1998).
Automatic method based on image analysis for pilling
evaluation in fabrics, Optical Engineering, 37 (11), 2937-
2947.
[3]. Adumitroaie, A., & Barbero, E. J. (2011). Beyond plain
weave fabrics–I. Geometrical model. Composite
Structures, 93(5), 1424-1432. https://doi.org/10.1016/j.
compstruct.2010.11.014
[4]. Agarwal, G., Koehl, L., Zeng, X., & Kothari, V. K. (2009).
An intelligent system for supporting design of fashion
oriented personalized fabric products. Indian Journal of
Fibre & Textile Research (IJFTR), 34(3), 258-266.
[5]. Aitken, R. (1983). Polyester: Rayon's Best Compliment
Yet, Lenzinger Berichte, 54, 43-51.
[6]. Ameri, F., Moradian, S., & Faez, K. (2006). Use of
transformed reflectance functions for neural network color
match prediction systems. Indian Journal of Fibre & Textile
Research (IJFTR), 31(3), 439-443.
[7]. Ameri, F., Moradian, S., Amani, T. M., & Faez, K. (2005).
The use of fundamental color stimulus to improve the
performance of artificial neural network color match
prediction systems. Iranian Journal of Chemistry and
Chemical Engineering (IJCCE), 24(4), 53-61.
[8]. Baldi, P., & Sadowski, P. (2016). A theory of local
learning, the learning channel, and the optimality of
backpropagation. Neural Networks, 83, 51-74. https://doi.
org/10.1016/j.neunet.2016.07.006
[9]. Bandyopadhyay, S. K., & Sur, D. (2000). Objective
assessment of abrasive damage of jute-based fabric
surface by digital image analysis. Indian Journal of Fibre &
Textile Research (IJFTR), 25(1), 42-51.
[10]. Baradari, M. G., Semnani, D., & Sheikhzadeh, M.
(2010). Study on hybrid yarns integrity through image
processing and artificial intelligence techniques. Indian
Journal of Fibre & Textile Research (IJFTR), 35(3), 206-212.
[11]. Baykal, P. D., Babaarslan, O., & Erol, R. (2006).
Prediction of strength and elongation properties of cotton
polyester-blended OE rotor yarns. Fibres and Textiles in
Eastern Europe, 14(1), 18-21.
[12]. Behera, B. K., & Mani, M. P. (2007). Characterization
and classification of fabric defects using discrete cosine
transformation and artificial neural network. Indian Journal
of Fibre & Textile Research (IJFTR), 32(4), 421- 426.
[13]. Behera, B. K., & Mishra, R. (2008). Measurement of
fabric wrinkle using digital image processing. Indian
Journal of Fibre & Textile Research (IJFTR), 33(1), 30-36.
[14]. Behera, B. K., & Muttagi, S. B. (2002). Engineering
design of woven fabrics—A recent approach. Indian
Journal of Fibre & Textile Research (IJFTR), 27(3), 315-322.
[15]. Behera, B. K., & Pattanayak, A. K. (2008).
Measurement and modeling of drape using digital image
processing. Indian Journal of Fibre & Textile Research
(IJFTR), 33(3), 230-238.
[16]. Benavente, R., Vanrell, M., & Baldrich, R. (2004).
Estimation of fuzzy sets for computational colour
categorization. Colour Research & Application, 29(5), 342-
353. https://doi.org/10.1002/col.20042
[17]. Bhattacharyya, S., Mondal, S., & Pal, S. (2003).
Measurement of yarn tension and its on-line monitoring.
Indian Journal of Fibre & Textile Research (IJFTR), 28(4), 418-
422.
[18]. Biswas, S. K. (2000). Computational and simulation
studies of jute fibre length distribution. Indian Journal of
Fibre & Textile Research (IJFTR), 25(3), 221-224.
[19]. Bo, Z. (2011). A prediction model based on linear
regression and artificial neural network analysis of the
hairiness of polyester cotton winding yarn. In Advances in
Multimedia, Software Engineering and Computing (Vol.
128, pp. 97-103). Heidelberg, Berlin: Springer. https://doi.
org/10.1007/978-3-642-25989-0_18
[20]. Bradow, J. M., & Davidonis, G. H. (2000). Quantitation
of fiber quality and the cotton production-processing
interface: A physiologist's perspective. The Journal of
Cotton Science, 4(1), 34-64.
[21]. Bradow, J. M., Hinojosa, O., Wartelle, L. H., Davidonis,
G., Sassenrath-Cole, G. F., & Bauer, P. J. (1996).
Applications of AFIS fineness and maturity module and Xray
fluorescence spectroscopy in fiber maturity evaluation.
Textile Research Journal, 66(9), 545-554. https://doi.org/
10.1177%2F004051759606600902
[22]. Bradow, J. M., Wartelle, L. H., Bauer, P. J., & Sassenrath-Cole, G. F. (1997). Quality measurements
small-sample cotton fiber quality quantitation. The Journal
of Cotton Science, 1, 48-60.
[23]. Branscomb, D., & Beale, D. G. (2011). Fault detection
in braiding utilizing low-cost USB machine vision. The Journal
of the Textile Institute, 102(7), 568-581. https://doi.org/10.
1080/00405000.2010.498174
[24]. Carvalho, V., Soares, F., & Vasconcelos, R. (2009,
September). Artificial intelligence and image processing
based techniques: A tool for yarns parameterization and
fabrics prediction. In 2009, IEEE Conference on Emerging
Technologies & Factory Automation (pp. 1-4). IEEE. https://
doi.org/10.1109/ETFA.2009.5347255
[25]. Çelik, H. İ., Dülger, L. C., & Topalbekiroğlu, M. (2014).
Fabric defect detection using linear filtering and
morphological operations. Indian Journal of Fibre & Textile
Research (IJFTR), 39(3), 254-259.
[26]. Çeven, E. K., Ozdemir, O., & Dagkurs, L. (2006).
Predicting abrasion behaviour of chenille fabric by fuzzy
logic. Indian Journal of Fibre & Textile Research (IJFTR),
31(4), 501-506.
[27]. Chattopadhyay, R. (2006). Application of neural
network in yarn manufacture. Indian Journal of Fibre &
Textile Research (IJFTR), 31(1), 160-169.
[28]. Chellamani, K. P., Arulmozhi, M., & Kumarasamy, K.
(2001). Role of fibre properties in colour non-uniformity of
dyed fabrics. Indian Journal of Fibre & Textile Research
(IJFTR), 26(3), 296-301.
[29]. Chen, Z., & Cao, F. (2016). Scattered data
approximation by neural networks operators. Neuro
Computing, 190, 237-242. https://doi.org/10.1016/j.neu
com.2016.01.013
[30]. Costarelli, D. (2015). Neural network operators:
constructive interpolation of multivariate functions. Neural
Networks, 67, 28-36. https://doi.org/10.1016/j.neunet.20
15.02.002
[31]. Costarelli, D., & Vinti, G. (2016a). Approximation by
max-product neural network operators of Kantorovich type.
Results in Mathematics, 69(3-4), 505-519. https://
doi.org/10.1007/s00025-016-0546-7
[32]. Costarelli, D., & Vinti, G. (2016b). Max-product neural
network and quasi-interpolation operators activated by
sigmoidal functions. Journal of Approximation Theory, 209,
1-22. https://doi.org/10.1016/j.jat.2016.05.001
[33]. Costarelli, D., & Vinti, G. (2016c). Pointwise and
uniform approximation by multivariate neural network
operators of the max-product type. Neural Networks, 81,
81-90. https://doi.org/10.1016/j.neunet.2016.06.002
[34]. Costarelli, D., & Vinti, G. (2017). Convergence for a
family of neural network operators in Orlicz spaces.
Mathematische Nachrichten, 290(2-3), 226-235. https://
doi.org/10.1002/mana.201600006
[35]. Dannemiller, J. L. (1989). Computational approaches
to color constancy: Adaptive and ontogenetic considerations.
Psychological Review, 96(2), 255-266. https://psycnet.apa.
org/doi/10.1037/0033-295X.96.2.255
[36]. Das, B., Das, A., Kothari, V. K., Fangueiro, R., & Araújo,
M. D. (2009). Studies on moisture transmission properties of
PV-blended fabrics. The Journal of the Textile Institute,
100(7), 588-597. https://doi.org/10.1080/0040500080212
5097
[37]. Das, D., Ishtiaque, S. M., & Mishra, P. (2010). Studies on
fibre openness using image analysis technique. Indian
Journal of Fiber and Textile Research, 35(1), 15-20.
[38]. Dauxois, J. Y., Guilloux, A., & Kirmani, S. N. (2014).
Estimation in a competing risks proportional hazards model
under length-biased sampling with censoring. Lifetime
Data Analysis, 20(2), 276-302. https://doi.org/10.1007/s10
985-013-9248-6
[39]. Debnath, S., Madhusoothanan, M., & Srinivasamoorthy,
V. R. (2000). Prediction of air permeability of needlepunched
nonwoven fabrics using artificial neural network
and empirical models. Indian Journal of Fibre & Textile
Research (IJFTR), 25(4), 251-255.
[40]. Demiryürek, O., & Uysaltür, D. (2014). Statistical
analyses and properties of viloft/polyester and viloft/cotton
blended ring-spun yarns. Fibres & Textiles in Eastern Europe,
1(103), 22-27.
[41]. Doczyova, K., Glombikova, V., & Komarkova, P.
(2014). Application of Microtomography in Textile
Metrology. Tekstilec, 57(1), 4-11.
[42]. Drobina, R., & Machnio, M. S. (2006). Application of the image analysis technique for textile identification
AUTEX. Research Journal, 6 (1), 40-48.
[43]. Eichhorn, S., Hearle, J. W. S., Jaffe, M., & Kikutani, T.
(Eds.). (2009). Handbook of Textile Fibre Structure: Volume
1: Fundamentals and Manufactured Polymer Fibres.
Cambridge, UK: Woodhead Publishing Limited.
[44]. El Messiry, M., & Abd-Ellatif, S. M. (2013). Prediction of
extra long egyptian yarn tenacity using fibre quality index
(mfqi). Fibres & Textiles in Eastern Europe, 3 (99), 31-35.
[45]. Fabijańska, A. (2011). Yarn image segmentation using
the region growing algorithm. Measurement Science and
Technology, 22(11), 114024.
[46]. Fabijańska, A., & Jackowska-Strumiłło, L. (2012).
Image processing and analysis algorithms for yarn hairiness
determination. Machine Vision and Applications, 23(3),
527-540. https://doi.org/10.1007/s00138-012-0411-y
[47]. Fatahi, I., & Yazdi, A. A. (2012). Predicting air
permeability from the parameters of weave structure.
Fibres & Textiles in Eastern Europe, 3(92), 78-81.
[48]. Foulk, J., Meredith, W., McAlister, D., & Luke, D. (2009).
Fiber and yarn properties improve with new cotton cultivar.
The Journal of Cotton Science, 13(3), 212–220.
[49]. Ghosh, A., Ishtiaque, S., Rengasamy, S., Mal, P., &
Patnaik, A. (2005). Predictive models for strength of spun
yarns: An overview. AUTEX Research Journal, 5(1), 20-29.
[50]. Ghosh, S., & Koenig, M. M. (2002). A geometric model
of woven geotextile tape fabric to predict tensile property.
Indian Journal of Fibre & Textile Research (IJFTR), 27, 388-
392.
[51]. Grover, G., Sultan, M. A., & Spivak, S. M. (1993). A
screening technique for fabric handle. Journal of the Textile
Institute, 84(3), 486-494. https://doi.org/10.1080/0040500
9308658980
[52]. Guruprasad, R., & Behera, B. K. (2010). Soft
computing in textiles. Indian Journal of Fibre & Textile
Research (IJFTR), 35(1), 75- 84.
[53]. Hake, K., Bragg, K., Mauney, J., & Metzer, B. (1990).
Causes of high and low micronaire. Physiology Today, 1(12),
1-4.
[54]. Hasanbeigi, A. (2013). Emerging Technologies for an
Energy-Efficient, Water-Efficient, and Low-Pollution Textile
Industry (No. LBNL-6510E). Berkeley, CA: Lawrence Berkeley
National Laboratory.
[55]. Hasani, H. (2010). Novel method to evaluate the lowstress
shearing behaviour of knitted fabrics. Fibres and
Textiles in Eastern Europe, 18(2), 70-72.
[56]. Hodge, V. J., O'Keefe, S., & Austin, J. (2016). Hadoop
neural network for parallel and distributed feature selection.
Neural Networks, 78, 24-35. https://doi.org/10.1016/
j.neunet.2015.08.011
[57]. Ishtiaque, S. M., Das, A., Sharma, V., & Jain, A. K.
(2003). Evaluation of fabric hand by extraction method.
Indian Journal of Fibre & Textile Research (IJFTR), 28(2), 197-
201.
[58]. Jaime, R., McKamey, J., & Cotty, P. J. (2013). Module
storage time, leaf grade and seed moisture influence fiber
quality and aflatoxin contamination of cotton in South
Texas. Journal of Cotton Science, 17(1), 60-68.
[59]. Jaouachi, B., Louati, H., & Hellali, H. (2010). Predicting
residual bagging bend height of knitted fabric using fuzzy
modelling and neural networks. AUTEX Research Journal,
10(4), 110-115.
[60]. Jeddi, A. A., Nosraty, H., Ordoukhany, D., & Rashidian,
M. (1999). A comparative study on the performance of
electronically-and mechanically controlled warp yarn letoff
systems. Indian Journal of Fibre & Textile Research
(IJFTR), 24(4), 258-263.
[61]. Kan, C. W., & Lam, Y. L. (2013). Low stress mechanical
properties of plasma-treated cotton fabric subjected to
zinc oxide anti-microbial treatment. Materials, 6(1), 314-
333. https://doi.org/10.3390/ma6010314
[62]. Kang, T. J., Kim, C. H., & Oh, K. W. (1999). Automatic
recognition of fabric weave patterns by digital image
analysis. Textile Research Journal, 69(2), 77-83. https://doi.
org/10.1177%2F004051759906900201
[63]. Karthik, T., & Murugan, R. (2014). Influence of friction
spinning process parameters on spinnability of
Pergularia/Cotton-Blended Yarns. Journal of Natural Fibers,
11(1), 54-73. https://doi.org/10.1080/15440478.2013.
829016
[64]. Koltysheva, N. G., Lomov, S. V., & Truevtzev, N. N. (2004). Abrasion resistance of cotton/flax fabrics: 3D
computer simulations of fabric wear geometry. AUTEX
Research Journal, 4(4), 182-186.
[65]. Kumar, A., Rao, K. V., & Pandey, G. C. (2003).
Characterization of various acrylic fibres by infrared
spectroscopy. Indian Journal of Fibre & Textile Research
(IJFTR), 28(1), 71-75.
[66]. Lachkar, A., Gadi, T., Benslimane, R., D'orazio, L., &
Martuscelli, E. (2003). Textile woven-fabric recognition by
using fourier image-analysis techniques: Part I: a fully
automatic approach for crossed-points detection. Journal
of the Textile Institute, 94(3-4), 194-201. https://doi.org/
10.1080/00405000308630608
[67]. Leng, Q., Zhang, H., Fan, C., & Deng, D. (2014). Fabric
defect detection using independent component analysis
and phase congruency. Wuhan University Journal of
Natural Sciences, 19(4), 328-334. https://doi.org/10.1007/
s11859-014-1021-5
[68]. Li, Y., Ai, J., & Sun, C. (2013). Online fabric defect
inspection using smart visual sensors. Sensors, 13(4), 4659-
4673. https://doi.org/10.3390/s130404659
[69]. Lickfield, G. C., Yang, C. Q., Drews, M. J., & Aspland,
J. R. (2001). Abrasion Resistance of Durable Press Cotton
(No. C00-C01). National Textile Center Annual Report.
[70]. Lim, J., & Kim, S. (2011). Analysis of woven fabric
structure using image analysis and artificial intelligence.
Fibers and Polymers, 12(8), 1062-1068. https://doi.org/
10.1007/s12221-011-1062-8
[71]. Liqing, L., Jia, T., & Chen, X. (2008). Automatic
recognition of fabric structures based on digital image
decomposition. Indian Journal of Fibre & Textile Research
(IJFTR), 33(4), 388-391.
[72]. Liu, Z. Y., Wu, H. F., & Huang, J. F. (2010). Application of
neural networks to discriminate fungal infection levels in rice
panicles using hyperspectral reflectance and principal
components analysis. Computers and Electronics in
Agriculture, 72(2), 99-106. https://doi.org/10.1016/j.
compag.2010.03.003
[73]. Majumdar, A. (2010). Modeling of cotton yarn hairiness
using adaptive neuro-fuzzy inference system. Indian Journal
of Fibre & Textile Research (IJFTR), 35(2), 121-127.
[74]. Majumdar, A. (Ed.). (2011). Soft computing in textile
engineering. Cambridge, UK: Woodhead Publishing
Limited.
[75]. Majumdar, A., Ciocoiu, M., & Blaga, M. (2008).
Modelling of ring yarn unevenness by soft computing
approach. Fibers and Polymers, 9(2), 210-216. https://doi.
org/10.1007/s12221-008-0034-0
[76]. Majumdar, A., Majumdar, P. K., & Sarkar, B. (2004).
Prediction of single yarn tenacity of ring-and rotor-spun
yarns from HVI results using artificial neural networks. Indian
Journal of Fibre & Textile Research (IJFTR), 29(2), 157-162.
[77]. Majumdar, A., Majumdar, P. K., & Sarkar, B. (2005).
Application of linear regression, artificial neural network and
neuro-fuzzy algorithms to predict the breaking elongation
of rotor-spun yarns. Indian Journal of Fibre & Textile
Research (IJFTR), 30(1), 19-25.
[78]. Majumdar, A., Sarkar, B., & Majumdar, P. K. (2004).
Application of analytic hierarchy process for the selection
of cotton fibers. Fibers and Polymers, 5(4), 297-302. https://
doi.org/10.1007/BF02875528
[79]. Malik, M. H., & Hussain, T. (2011). Effect of percentage
of short fibers removed from cotton during spinning on the
properties of dyed polyester/cotton-blended knitted
fabrics. The Journal of the Textile Institute, 102(1), 70-76.
https://doi.org/10.1080/00405000903495241
[80]. Marmarali, A. R. Z. U., & Gorken, S. O. (2005).
Dimensional and physical properties of 3-D fabrics
produced on the flat knitting machines. Indian Journal of
Fibre & Textile Research (IJFTR), 30(4), 371-376.
[81]. Matsuo, T. (2008). Innovations in textile machine and
instrument. Indian Journal of Fibre & Textile Research (IJFTR),
33(3), 288- 303.
[82]. Memarian, F., Amani-Tehran, M., & Latifi, M. (2011).
Rank ordering and image processing methods aided
fabric wrinkle evaluation. Fibers and Polymers, 12(6), 830-
835. https://doi.org/10.1007/s12221-011-0830-9
[83]. Militký, J., & Bleša, M. (2008). Evaluation of patterned
fabric surface roughness. Indian Journal of Fibre & Textile
Research (IJFTR), 33(3), 246-252.
[84]. Mukhopadhyay, A., Kaushik, R. C. D., & Kothari, V. K.
(2000). Effect of air-jet texturing process variables on physical bulk obtained by image analysis method. Indian
Journal of Fibre & Textile Research (IJFTR), 25(4), 264-270.
[85]. Musnickas, J., Rupainyt, V., Treigien, R., & Ragelien, L.
(2005). Dye migration influences on colour: Characteristics
of wool fabric dyed with acid dye. Fibres & Text in Eastern
Europe, 13(6), 65-69.
[86]. Mwasiagi, J. I., Wang, X. H., & Huang, X. B. (2009). The
use of k-means and artificial neural network to classify
cotton lint. Fibers and Polymers, 10(3), 379-383. https://
doi.org/10.1007/s12221-009-0379-z
[87]. Needles, H. L. (1986). Textile fibers, dyes, finishes, and
processes: A concise guide, New Jersey, USA: Noyes
Publications.
[88]. Nurwaha, D., & Wang, X. H. (2010). Prediction of rotor
spun yarn strength from cotton fiber properties using
adaptive neuro-fuzzy inference system method. Fibers and
Polymers, 11(1), 97-100. https://doi.org/10.1007/s12221-
010-0097-6
[89]. Nurwaha, D., & Wang, X. H. (2012). Using intelligent
control systems to predict textile yarn quality. Fibres &
Textiles in Eastern Europe, 20(1), 23-27.
[90]. Patnaik, S., & Zhong, B. (Eds.). (2014). Soft Computing
Techniques in Engineering Applications. Switzerland:
Springer International Publishing.
[91]. Rodgers, J., Montalvo, J., Davidonis, G., & VonHoven,
T. (2010). Near infrared measurement of cotton fiber
micronaire, maturity and fineness-A comparative
investigation. Textile Research Journal, 80(9), 780-793.
https://doi.org/10.1177%2F0040517509343780
[92]. Scardapane, S., & Wang, D. (2017). Randomness in
neural networks: An overview. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 7(2),
e1200. https://doi.org/10.1002/widm.1200
[93]. Schmidhuber, J. (2015). Deep learning in neural
networks: An overview. Neural Networks, 61, 85-117.
https://doi.org/10.1016/j.neunet.2014.09.003
[94]. Semnani, D., & Gholami, A. (2009). A sharp technique
for identification of defective points in false twist textured
yarns. Indian Journal of Fibre & Textile Research (IJFTR),
34(4), 380-383.
[95]. Shams-Nateri, A. (2011). Estimation of fabric color by
camera based neuro-fuzzy technique. Indian Journal of
Fibre & Textile Research (IJFTR), 36(1), 74-80.
[96]. Shanbeh, M., Ataeian, A., Sheikhzadeh, M., & Zare, H.
(2010). Effect of fibre fineness on colour and reflectance
value of dyed filament polyester fabrics after abrasion
process. Tekstilec, 53(10-12), 285-293.
[97]. Shanmugam, N., & Doke, S. S. (2005). Highest
standard count estimation from fibre parameters using
neural network techniques. Indian Journal of Fibre & Textile
Research (IJFTR), 30(3), 302-308.
[98]. Shanmugam, N., & Doke, S. S. (2006). Classifying fibre
attributes of cotton using Kohonen neural networks. Indian
Journal of Fibre & Textile Research (IJFTR), 31(4), 583-587.
[99]. Shanmugam, N., Chattopadhyay, S. K., Vivekanandan,
M. Y., & Sreenivasamurthy, H. V. (2001). Prediction of microspun
yarn lea CSP using artificial neural networks. Indian
Journal of Fibre & Textile Research (IJFTR), 26(4), 372-377.
[100]. She, F. H., Kong, L. X., Nahavandi, S., & Kouzani, A. Z.
(2002). Intelligent animal fiber classification with artificial
neural networks. Textile Research Journal, 72(7), 594-600.
https://doi.org/10.1177%2F004051750207200706
[101]. Soe, A. K., Takahashi, M., Nakajima, M., Matsuo, T., &
Matsumoto, T. (2004). Structure and properties of MVS yarns
in comparison with ring yarns and open-end rotor spun
yarns. Textile Research Journal, 74(9), 819-826. https://doi.
org/10.1177%2F004051750407400911
[102]. Stoppa, M., & Chiolerio, A. (2014). Wearable
electronics and smart textiles: A critical review. Sensors,
14(7), 11957-11992. https://doi.org/10.3390/s140711957
[103]. Sun, J., Yao, M., Xu, B., & Bel, P. (2011). Fabric wrinkle
characterization and classification using modified wavelet
coefficients and support-vector-machine classifiers. Textile
Research Journal, 81(9), 902-913. https://doi.org/
10.1177%2F0040517510391702
[104]. Thibodeaux, D., Senter, H., Knowlton, J. L., Mcalister,
D., & Cui, X. (2008). The impact of short fiber content on the
quality of cotton ring spun yarn. Journal of Cotton Science,
12(4), 368-377.
[105]. Thilagavathi, G., & Natarajan, V. (2003).
Development of a method for measurement of fabric
three-dimensional drape and studies on influencing factors. Indian Journal of Fibre & Textile Research (IJFTR),
28(1), 41-49.
[106]. Turan, R. B., & Okur, A. (2013). A 3-D model study for
2/1 twill and 3/1 twill weaves. Indian Journal of Fibre & Textile
Research (IJFTR), 38(3), 251-258.
[107]. Ucar, N., & Ertuğrul, S. (2007). Prediction of fuzz fibers
on fabric surface by using neural network and regression
analysis. Fibres & Textiles in Eastern Europe, 2 (61), 58-61.
[108]. Xin, B., Li, Y., Qiu, J., & Liu, Y. (2012). Texture modelling
of fabric appearance evaluation based on image
analysis. Fibres & Textiles in Eastern Europe, 2 (91), 48-52.
[109]. Xu, B., & Ting, Y. L. (1996). Fiber-image analysis part II:
measurement of general geometric properties of fibers.
Journal of the Textile Institute, 87(2), 284-295. https://
doi.org/10.1080/00405009608659081
[110]. Xu, B., Dale, D. S., Huang, Y., & Watson, M. D. (2002).
Cotton color classification by fuzzy logic. Textile Research
Journal, 72(6), 504-509. https://doi.org/10.1177%
2F004051750207200607
[111]. Yadav, V. K., & Kothari, V. K. (2004). Prediction of airjet
textured yarn properties using statistical method and
neural network. Indian Journal of Fibre & Textile Research
(IJFTR), 29(2), 149-156.
[112]. Yadav, Y., & Singh, R. (2010). An overview of the
advance emerging techniques in textile industries. Oriental
Journal of Chemistry, 26(2), 527-535.
[113]. Yao, B. G., Yan, L. X., Wang, J. C., & Hong, S. Y.
(2013). Test method for compression resilience evaluation
of textiles. Indonesian Journal of Electrical Engineering and
Computer Science, 11(2), 674-680.
[114]. Zaouali, R., Msahli, S., & Sakli, F. (2010). Fabric
wrinkling evaluation: a method developed using digital
image analysis. The Journal of The Textile Institute, 101(12),
1057-1067. https://doi.org/10.1080/00405000903230929
[115]. Zhang, Z., & Friedrich, K. (2003). Artificial neural
networks applied to polymer composites: A review.
Composites Science and Technology, 63(14), 2029-2044.
https://doi.org/10.1016/S0266-3538(03)00106-4