Fibers Image Analysis: A Review of Fibers Processing Techniques

Lalit Prakash Saxena*
Applied Research Section, Combo Consultancy, Sonebhadra, Uttar Pradesh, India.
Periodicity:April - June'2020
DOI : https://doi.org/10.26634/jip.7.2.17034

Abstract

Fibers image analysis is a new approach used in textile industries based on image processing techniques to enhance fiber imaging applications. These applications include fibers defects detection, fabrics wrinkle measurement, and fabric surface roughness evaluation that employ image processing techniques. This paper presents a review of fibers and fabrics image analysis applications using image processing techniques. These analysis applications outlay digital image processing techniques and employ specific procedures for specific purposes. Some of these procedures are morphological and mathematical operations, and soft-computing techniques finitely used for the processing of the fibers and fabrics images. This reduces manual labor in locating or detecting the defects in the fibers as well as in the processed fabrics. The advantage of using imaging applications is in monitoring the fibers from its preparation, through the knitting for fabric formation to final packaging of the fabrics. It is evident from this review that there is more to achieve in fibers analysis using image processing. As far as the images are concerned, a standard database of fabrics and fibers images is the need of the current textile industries to test and evaluate new innovative methods and imaging applications.

Keywords

Fibers Analysis, Fabrics Evaluation, Defect Detection, Image Processing, Imaging Applications.

How to Cite this Article?

Saxena, L. P. (2020). Fibers Image Analysis: A Review of Fibers Processing Techniques. i-manager's Journal on Image Processing, 7(2), 28-40. https://doi.org/10.26634/jip.7.2.17034

References

[1]. Abd-Ellatif, S. A. M. (2013). Optimizing sliver quality using Artificial Neural Networks in ring spinning. Alexandria Engineering Journal, 52(4), 637-642. https://doi.org/10. 1016/j.aej.2013.09.007
[2]. Abril, H. C., Millan, M. S., Torres, Y., & Navarro, R. (1998). Automatic method based on image analysis for pilling evaluation in fabrics, Optical Engineering, 37 (11), 2937- 2947.
[3]. Adumitroaie, A., & Barbero, E. J. (2011). Beyond plain weave fabrics–I. Geometrical model. Composite Structures, 93(5), 1424-1432. https://doi.org/10.1016/j. compstruct.2010.11.014
[4]. Agarwal, G., Koehl, L., Zeng, X., & Kothari, V. K. (2009). An intelligent system for supporting design of fashion oriented personalized fabric products. Indian Journal of Fibre & Textile Research (IJFTR), 34(3), 258-266.
[5]. Aitken, R. (1983). Polyester: Rayon's Best Compliment Yet, Lenzinger Berichte, 54, 43-51.
[6]. Ameri, F., Moradian, S., & Faez, K. (2006). Use of transformed reflectance functions for neural network color match prediction systems. Indian Journal of Fibre & Textile Research (IJFTR), 31(3), 439-443.
[7]. Ameri, F., Moradian, S., Amani, T. M., & Faez, K. (2005). The use of fundamental color stimulus to improve the performance of artificial neural network color match prediction systems. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 24(4), 53-61.
[8]. Baldi, P., & Sadowski, P. (2016). A theory of local learning, the learning channel, and the optimality of backpropagation. Neural Networks, 83, 51-74. https://doi. org/10.1016/j.neunet.2016.07.006
[9]. Bandyopadhyay, S. K., & Sur, D. (2000). Objective assessment of abrasive damage of jute-based fabric surface by digital image analysis. Indian Journal of Fibre & Textile Research (IJFTR), 25(1), 42-51.
[10]. Baradari, M. G., Semnani, D., & Sheikhzadeh, M. (2010). Study on hybrid yarns integrity through image processing and artificial intelligence techniques. Indian Journal of Fibre & Textile Research (IJFTR), 35(3), 206-212.
[11]. Baykal, P. D., Babaarslan, O., & Erol, R. (2006). Prediction of strength and elongation properties of cotton polyester-blended OE rotor yarns. Fibres and Textiles in Eastern Europe, 14(1), 18-21.
[12]. Behera, B. K., & Mani, M. P. (2007). Characterization and classification of fabric defects using discrete cosine transformation and artificial neural network. Indian Journal of Fibre & Textile Research (IJFTR), 32(4), 421- 426.
[13]. Behera, B. K., & Mishra, R. (2008). Measurement of fabric wrinkle using digital image processing. Indian Journal of Fibre & Textile Research (IJFTR), 33(1), 30-36.
[14]. Behera, B. K., & Muttagi, S. B. (2002). Engineering design of woven fabrics—A recent approach. Indian Journal of Fibre & Textile Research (IJFTR), 27(3), 315-322.
[15]. Behera, B. K., & Pattanayak, A. K. (2008). Measurement and modeling of drape using digital image processing. Indian Journal of Fibre & Textile Research (IJFTR), 33(3), 230-238.
[16]. Benavente, R., Vanrell, M., & Baldrich, R. (2004). Estimation of fuzzy sets for computational colour categorization. Colour Research & Application, 29(5), 342- 353. https://doi.org/10.1002/col.20042
[17]. Bhattacharyya, S., Mondal, S., & Pal, S. (2003). Measurement of yarn tension and its on-line monitoring. Indian Journal of Fibre & Textile Research (IJFTR), 28(4), 418- 422.
[18]. Biswas, S. K. (2000). Computational and simulation studies of jute fibre length distribution. Indian Journal of Fibre & Textile Research (IJFTR), 25(3), 221-224.
[19]. Bo, Z. (2011). A prediction model based on linear regression and artificial neural network analysis of the hairiness of polyester cotton winding yarn. In Advances in Multimedia, Software Engineering and Computing (Vol. 128, pp. 97-103). Heidelberg, Berlin: Springer. https://doi. org/10.1007/978-3-642-25989-0_18
[20]. Bradow, J. M., & Davidonis, G. H. (2000). Quantitation of fiber quality and the cotton production-processing interface: A physiologist's perspective. The Journal of Cotton Science, 4(1), 34-64.
[21]. Bradow, J. M., Hinojosa, O., Wartelle, L. H., Davidonis, G., Sassenrath-Cole, G. F., & Bauer, P. J. (1996). Applications of AFIS fineness and maturity module and Xray fluorescence spectroscopy in fiber maturity evaluation. Textile Research Journal, 66(9), 545-554. https://doi.org/ 10.1177%2F004051759606600902
[22]. Bradow, J. M., Wartelle, L. H., Bauer, P. J., & Sassenrath-Cole, G. F. (1997). Quality measurements small-sample cotton fiber quality quantitation. The Journal of Cotton Science, 1, 48-60.
[23]. Branscomb, D., & Beale, D. G. (2011). Fault detection in braiding utilizing low-cost USB machine vision. The Journal of the Textile Institute, 102(7), 568-581. https://doi.org/10. 1080/00405000.2010.498174
[24]. Carvalho, V., Soares, F., & Vasconcelos, R. (2009, September). Artificial intelligence and image processing based techniques: A tool for yarns parameterization and fabrics prediction. In 2009, IEEE Conference on Emerging Technologies & Factory Automation (pp. 1-4). IEEE. https:// doi.org/10.1109/ETFA.2009.5347255
[25]. Çelik, H. İ., Dülger, L. C., & Topalbekiroğlu, M. (2014). Fabric defect detection using linear filtering and morphological operations. Indian Journal of Fibre & Textile Research (IJFTR), 39(3), 254-259.
[26]. Çeven, E. K., Ozdemir, O., & Dagkurs, L. (2006). Predicting abrasion behaviour of chenille fabric by fuzzy logic. Indian Journal of Fibre & Textile Research (IJFTR), 31(4), 501-506.
[27]. Chattopadhyay, R. (2006). Application of neural network in yarn manufacture. Indian Journal of Fibre & Textile Research (IJFTR), 31(1), 160-169.
[28]. Chellamani, K. P., Arulmozhi, M., & Kumarasamy, K. (2001). Role of fibre properties in colour non-uniformity of dyed fabrics. Indian Journal of Fibre & Textile Research (IJFTR), 26(3), 296-301.
[29]. Chen, Z., & Cao, F. (2016). Scattered data approximation by neural networks operators. Neuro Computing, 190, 237-242. https://doi.org/10.1016/j.neu com.2016.01.013
[30]. Costarelli, D. (2015). Neural network operators: constructive interpolation of multivariate functions. Neural Networks, 67, 28-36. https://doi.org/10.1016/j.neunet.20 15.02.002
[31]. Costarelli, D., & Vinti, G. (2016a). Approximation by max-product neural network operators of Kantorovich type. Results in Mathematics, 69(3-4), 505-519. https:// doi.org/10.1007/s00025-016-0546-7
[32]. Costarelli, D., & Vinti, G. (2016b). Max-product neural network and quasi-interpolation operators activated by sigmoidal functions. Journal of Approximation Theory, 209, 1-22. https://doi.org/10.1016/j.jat.2016.05.001
[33]. Costarelli, D., & Vinti, G. (2016c). Pointwise and uniform approximation by multivariate neural network operators of the max-product type. Neural Networks, 81, 81-90. https://doi.org/10.1016/j.neunet.2016.06.002
[34]. Costarelli, D., & Vinti, G. (2017). Convergence for a family of neural network operators in Orlicz spaces. Mathematische Nachrichten, 290(2-3), 226-235. https:// doi.org/10.1002/mana.201600006
[35]. Dannemiller, J. L. (1989). Computational approaches to color constancy: Adaptive and ontogenetic considerations. Psychological Review, 96(2), 255-266. https://psycnet.apa. org/doi/10.1037/0033-295X.96.2.255
[36]. Das, B., Das, A., Kothari, V. K., Fangueiro, R., & Araújo, M. D. (2009). Studies on moisture transmission properties of PV-blended fabrics. The Journal of the Textile Institute, 100(7), 588-597. https://doi.org/10.1080/0040500080212 5097
[37]. Das, D., Ishtiaque, S. M., & Mishra, P. (2010). Studies on fibre openness using image analysis technique. Indian Journal of Fiber and Textile Research, 35(1), 15-20.
[38]. Dauxois, J. Y., Guilloux, A., & Kirmani, S. N. (2014). Estimation in a competing risks proportional hazards model under length-biased sampling with censoring. Lifetime Data Analysis, 20(2), 276-302. https://doi.org/10.1007/s10 985-013-9248-6
[39]. Debnath, S., Madhusoothanan, M., & Srinivasamoorthy, V. R. (2000). Prediction of air permeability of needlepunched nonwoven fabrics using artificial neural network and empirical models. Indian Journal of Fibre & Textile Research (IJFTR), 25(4), 251-255.
[40]. Demiryürek, O., & Uysaltür, D. (2014). Statistical analyses and properties of viloft/polyester and viloft/cotton blended ring-spun yarns. Fibres & Textiles in Eastern Europe, 1(103), 22-27.
[41]. Doczyova, K., Glombikova, V., & Komarkova, P. (2014). Application of Microtomography in Textile Metrology. Tekstilec, 57(1), 4-11.
[42]. Drobina, R., & Machnio, M. S. (2006). Application of the image analysis technique for textile identification AUTEX. Research Journal, 6 (1), 40-48.
[43]. Eichhorn, S., Hearle, J. W. S., Jaffe, M., & Kikutani, T. (Eds.). (2009). Handbook of Textile Fibre Structure: Volume 1: Fundamentals and Manufactured Polymer Fibres. Cambridge, UK: Woodhead Publishing Limited.
[44]. El Messiry, M., & Abd-Ellatif, S. M. (2013). Prediction of extra long egyptian yarn tenacity using fibre quality index (mfqi). Fibres & Textiles in Eastern Europe, 3 (99), 31-35.
[45]. Fabijańska, A. (2011). Yarn image segmentation using the region growing algorithm. Measurement Science and Technology, 22(11), 114024.
[46]. Fabijańska, A., & Jackowska-Strumiłło, L. (2012). Image processing and analysis algorithms for yarn hairiness determination. Machine Vision and Applications, 23(3), 527-540. https://doi.org/10.1007/s00138-012-0411-y
[47]. Fatahi, I., & Yazdi, A. A. (2012). Predicting air permeability from the parameters of weave structure. Fibres & Textiles in Eastern Europe, 3(92), 78-81.
[48]. Foulk, J., Meredith, W., McAlister, D., & Luke, D. (2009). Fiber and yarn properties improve with new cotton cultivar. The Journal of Cotton Science, 13(3), 212–220.
[49]. Ghosh, A., Ishtiaque, S., Rengasamy, S., Mal, P., & Patnaik, A. (2005). Predictive models for strength of spun yarns: An overview. AUTEX Research Journal, 5(1), 20-29.
[50]. Ghosh, S., & Koenig, M. M. (2002). A geometric model of woven geotextile tape fabric to predict tensile property. Indian Journal of Fibre & Textile Research (IJFTR), 27, 388- 392.
[51]. Grover, G., Sultan, M. A., & Spivak, S. M. (1993). A screening technique for fabric handle. Journal of the Textile Institute, 84(3), 486-494. https://doi.org/10.1080/0040500 9308658980
[52]. Guruprasad, R., & Behera, B. K. (2010). Soft computing in textiles. Indian Journal of Fibre & Textile Research (IJFTR), 35(1), 75- 84.
[53]. Hake, K., Bragg, K., Mauney, J., & Metzer, B. (1990). Causes of high and low micronaire. Physiology Today, 1(12), 1-4.
[54]. Hasanbeigi, A. (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry (No. LBNL-6510E). Berkeley, CA: Lawrence Berkeley National Laboratory.
[55]. Hasani, H. (2010). Novel method to evaluate the lowstress shearing behaviour of knitted fabrics. Fibres and Textiles in Eastern Europe, 18(2), 70-72.
[56]. Hodge, V. J., O'Keefe, S., & Austin, J. (2016). Hadoop neural network for parallel and distributed feature selection. Neural Networks, 78, 24-35. https://doi.org/10.1016/ j.neunet.2015.08.011
[57]. Ishtiaque, S. M., Das, A., Sharma, V., & Jain, A. K. (2003). Evaluation of fabric hand by extraction method. Indian Journal of Fibre & Textile Research (IJFTR), 28(2), 197- 201.
[58]. Jaime, R., McKamey, J., & Cotty, P. J. (2013). Module storage time, leaf grade and seed moisture influence fiber quality and aflatoxin contamination of cotton in South Texas. Journal of Cotton Science, 17(1), 60-68.
[59]. Jaouachi, B., Louati, H., & Hellali, H. (2010). Predicting residual bagging bend height of knitted fabric using fuzzy modelling and neural networks. AUTEX Research Journal, 10(4), 110-115.
[60]. Jeddi, A. A., Nosraty, H., Ordoukhany, D., & Rashidian, M. (1999). A comparative study on the performance of electronically-and mechanically controlled warp yarn letoff systems. Indian Journal of Fibre & Textile Research (IJFTR), 24(4), 258-263.
[61]. Kan, C. W., & Lam, Y. L. (2013). Low stress mechanical properties of plasma-treated cotton fabric subjected to zinc oxide anti-microbial treatment. Materials, 6(1), 314- 333. https://doi.org/10.3390/ma6010314
[62]. Kang, T. J., Kim, C. H., & Oh, K. W. (1999). Automatic recognition of fabric weave patterns by digital image analysis. Textile Research Journal, 69(2), 77-83. https://doi. org/10.1177%2F004051759906900201
[63]. Karthik, T., & Murugan, R. (2014). Influence of friction spinning process parameters on spinnability of Pergularia/Cotton-Blended Yarns. Journal of Natural Fibers, 11(1), 54-73. https://doi.org/10.1080/15440478.2013. 829016
[64]. Koltysheva, N. G., Lomov, S. V., & Truevtzev, N. N. (2004). Abrasion resistance of cotton/flax fabrics: 3D computer simulations of fabric wear geometry. AUTEX Research Journal, 4(4), 182-186.
[65]. Kumar, A., Rao, K. V., & Pandey, G. C. (2003). Characterization of various acrylic fibres by infrared spectroscopy. Indian Journal of Fibre & Textile Research (IJFTR), 28(1), 71-75.
[66]. Lachkar, A., Gadi, T., Benslimane, R., D'orazio, L., & Martuscelli, E. (2003). Textile woven-fabric recognition by using fourier image-analysis techniques: Part I: a fully automatic approach for crossed-points detection. Journal of the Textile Institute, 94(3-4), 194-201. https://doi.org/ 10.1080/00405000308630608
[67]. Leng, Q., Zhang, H., Fan, C., & Deng, D. (2014). Fabric defect detection using independent component analysis and phase congruency. Wuhan University Journal of Natural Sciences, 19(4), 328-334. https://doi.org/10.1007/ s11859-014-1021-5
[68]. Li, Y., Ai, J., & Sun, C. (2013). Online fabric defect inspection using smart visual sensors. Sensors, 13(4), 4659- 4673. https://doi.org/10.3390/s130404659
[69]. Lickfield, G. C., Yang, C. Q., Drews, M. J., & Aspland, J. R. (2001). Abrasion Resistance of Durable Press Cotton (No. C00-C01). National Textile Center Annual Report.
[70]. Lim, J., & Kim, S. (2011). Analysis of woven fabric structure using image analysis and artificial intelligence. Fibers and Polymers, 12(8), 1062-1068. https://doi.org/ 10.1007/s12221-011-1062-8
[71]. Liqing, L., Jia, T., & Chen, X. (2008). Automatic recognition of fabric structures based on digital image decomposition. Indian Journal of Fibre & Textile Research (IJFTR), 33(4), 388-391.
[72]. Liu, Z. Y., Wu, H. F., & Huang, J. F. (2010). Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Computers and Electronics in Agriculture, 72(2), 99-106. https://doi.org/10.1016/j. compag.2010.03.003
[73]. Majumdar, A. (2010). Modeling of cotton yarn hairiness using adaptive neuro-fuzzy inference system. Indian Journal of Fibre & Textile Research (IJFTR), 35(2), 121-127.
[74]. Majumdar, A. (Ed.). (2011). Soft computing in textile engineering. Cambridge, UK: Woodhead Publishing Limited.
[75]. Majumdar, A., Ciocoiu, M., & Blaga, M. (2008). Modelling of ring yarn unevenness by soft computing approach. Fibers and Polymers, 9(2), 210-216. https://doi. org/10.1007/s12221-008-0034-0
[76]. Majumdar, A., Majumdar, P. K., & Sarkar, B. (2004). Prediction of single yarn tenacity of ring-and rotor-spun yarns from HVI results using artificial neural networks. Indian Journal of Fibre & Textile Research (IJFTR), 29(2), 157-162.
[77]. Majumdar, A., Majumdar, P. K., & Sarkar, B. (2005). Application of linear regression, artificial neural network and neuro-fuzzy algorithms to predict the breaking elongation of rotor-spun yarns. Indian Journal of Fibre & Textile Research (IJFTR), 30(1), 19-25.
[78]. Majumdar, A., Sarkar, B., & Majumdar, P. K. (2004). Application of analytic hierarchy process for the selection of cotton fibers. Fibers and Polymers, 5(4), 297-302. https:// doi.org/10.1007/BF02875528
[79]. Malik, M. H., & Hussain, T. (2011). Effect of percentage of short fibers removed from cotton during spinning on the properties of dyed polyester/cotton-blended knitted fabrics. The Journal of the Textile Institute, 102(1), 70-76. https://doi.org/10.1080/00405000903495241
[80]. Marmarali, A. R. Z. U., & Gorken, S. O. (2005). Dimensional and physical properties of 3-D fabrics produced on the flat knitting machines. Indian Journal of Fibre & Textile Research (IJFTR), 30(4), 371-376.
[81]. Matsuo, T. (2008). Innovations in textile machine and instrument. Indian Journal of Fibre & Textile Research (IJFTR), 33(3), 288- 303.
[82]. Memarian, F., Amani-Tehran, M., & Latifi, M. (2011). Rank ordering and image processing methods aided fabric wrinkle evaluation. Fibers and Polymers, 12(6), 830- 835. https://doi.org/10.1007/s12221-011-0830-9
[83]. Militký, J., & Bleša, M. (2008). Evaluation of patterned fabric surface roughness. Indian Journal of Fibre & Textile Research (IJFTR), 33(3), 246-252.
[84]. Mukhopadhyay, A., Kaushik, R. C. D., & Kothari, V. K. (2000). Effect of air-jet texturing process variables on physical bulk obtained by image analysis method. Indian Journal of Fibre & Textile Research (IJFTR), 25(4), 264-270.
[85]. Musnickas, J., Rupainyt, V., Treigien, R., & Ragelien, L. (2005). Dye migration influences on colour: Characteristics of wool fabric dyed with acid dye. Fibres & Text in Eastern Europe, 13(6), 65-69.
[86]. Mwasiagi, J. I., Wang, X. H., & Huang, X. B. (2009). The use of k-means and artificial neural network to classify cotton lint. Fibers and Polymers, 10(3), 379-383. https:// doi.org/10.1007/s12221-009-0379-z
[87]. Needles, H. L. (1986). Textile fibers, dyes, finishes, and processes: A concise guide, New Jersey, USA: Noyes Publications.
[88]. Nurwaha, D., & Wang, X. H. (2010). Prediction of rotor spun yarn strength from cotton fiber properties using adaptive neuro-fuzzy inference system method. Fibers and Polymers, 11(1), 97-100. https://doi.org/10.1007/s12221- 010-0097-6
[89]. Nurwaha, D., & Wang, X. H. (2012). Using intelligent control systems to predict textile yarn quality. Fibres & Textiles in Eastern Europe, 20(1), 23-27.
[90]. Patnaik, S., & Zhong, B. (Eds.). (2014). Soft Computing Techniques in Engineering Applications. Switzerland: Springer International Publishing.
[91]. Rodgers, J., Montalvo, J., Davidonis, G., & VonHoven, T. (2010). Near infrared measurement of cotton fiber micronaire, maturity and fineness-A comparative investigation. Textile Research Journal, 80(9), 780-793. https://doi.org/10.1177%2F0040517509343780
[92]. Scardapane, S., & Wang, D. (2017). Randomness in neural networks: An overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(2), e1200. https://doi.org/10.1002/widm.1200
[93]. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
[94]. Semnani, D., & Gholami, A. (2009). A sharp technique for identification of defective points in false twist textured yarns. Indian Journal of Fibre & Textile Research (IJFTR), 34(4), 380-383.
[95]. Shams-Nateri, A. (2011). Estimation of fabric color by camera based neuro-fuzzy technique. Indian Journal of Fibre & Textile Research (IJFTR), 36(1), 74-80.
[96]. Shanbeh, M., Ataeian, A., Sheikhzadeh, M., & Zare, H. (2010). Effect of fibre fineness on colour and reflectance value of dyed filament polyester fabrics after abrasion process. Tekstilec, 53(10-12), 285-293.
[97]. Shanmugam, N., & Doke, S. S. (2005). Highest standard count estimation from fibre parameters using neural network techniques. Indian Journal of Fibre & Textile Research (IJFTR), 30(3), 302-308.
[98]. Shanmugam, N., & Doke, S. S. (2006). Classifying fibre attributes of cotton using Kohonen neural networks. Indian Journal of Fibre & Textile Research (IJFTR), 31(4), 583-587.
[99]. Shanmugam, N., Chattopadhyay, S. K., Vivekanandan, M. Y., & Sreenivasamurthy, H. V. (2001). Prediction of microspun yarn lea CSP using artificial neural networks. Indian Journal of Fibre & Textile Research (IJFTR), 26(4), 372-377.
[100]. She, F. H., Kong, L. X., Nahavandi, S., & Kouzani, A. Z. (2002). Intelligent animal fiber classification with artificial neural networks. Textile Research Journal, 72(7), 594-600. https://doi.org/10.1177%2F004051750207200706
[101]. Soe, A. K., Takahashi, M., Nakajima, M., Matsuo, T., & Matsumoto, T. (2004). Structure and properties of MVS yarns in comparison with ring yarns and open-end rotor spun yarns. Textile Research Journal, 74(9), 819-826. https://doi. org/10.1177%2F004051750407400911
[102]. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. Sensors, 14(7), 11957-11992. https://doi.org/10.3390/s140711957
[103]. Sun, J., Yao, M., Xu, B., & Bel, P. (2011). Fabric wrinkle characterization and classification using modified wavelet coefficients and support-vector-machine classifiers. Textile Research Journal, 81(9), 902-913. https://doi.org/ 10.1177%2F0040517510391702
[104]. Thibodeaux, D., Senter, H., Knowlton, J. L., Mcalister, D., & Cui, X. (2008). The impact of short fiber content on the quality of cotton ring spun yarn. Journal of Cotton Science, 12(4), 368-377.
[105]. Thilagavathi, G., & Natarajan, V. (2003). Development of a method for measurement of fabric three-dimensional drape and studies on influencing factors. Indian Journal of Fibre & Textile Research (IJFTR), 28(1), 41-49.
[106]. Turan, R. B., & Okur, A. (2013). A 3-D model study for 2/1 twill and 3/1 twill weaves. Indian Journal of Fibre & Textile Research (IJFTR), 38(3), 251-258.
[107]. Ucar, N., & Ertuğrul, S. (2007). Prediction of fuzz fibers on fabric surface by using neural network and regression analysis. Fibres & Textiles in Eastern Europe, 2 (61), 58-61.
[108]. Xin, B., Li, Y., Qiu, J., & Liu, Y. (2012). Texture modelling of fabric appearance evaluation based on image analysis. Fibres & Textiles in Eastern Europe, 2 (91), 48-52.
[109]. Xu, B., & Ting, Y. L. (1996). Fiber-image analysis part II: measurement of general geometric properties of fibers. Journal of the Textile Institute, 87(2), 284-295. https:// doi.org/10.1080/00405009608659081
[110]. Xu, B., Dale, D. S., Huang, Y., & Watson, M. D. (2002). Cotton color classification by fuzzy logic. Textile Research Journal, 72(6), 504-509. https://doi.org/10.1177% 2F004051750207200607
[111]. Yadav, V. K., & Kothari, V. K. (2004). Prediction of airjet textured yarn properties using statistical method and neural network. Indian Journal of Fibre & Textile Research (IJFTR), 29(2), 149-156.
[112]. Yadav, Y., & Singh, R. (2010). An overview of the advance emerging techniques in textile industries. Oriental Journal of Chemistry, 26(2), 527-535.
[113]. Yao, B. G., Yan, L. X., Wang, J. C., & Hong, S. Y. (2013). Test method for compression resilience evaluation of textiles. Indonesian Journal of Electrical Engineering and Computer Science, 11(2), 674-680.
[114]. Zaouali, R., Msahli, S., & Sakli, F. (2010). Fabric wrinkling evaluation: a method developed using digital image analysis. The Journal of The Textile Institute, 101(12), 1057-1067. https://doi.org/10.1080/00405000903230929
[115]. Zhang, Z., & Friedrich, K. (2003). Artificial neural networks applied to polymer composites: A review. Composites Science and Technology, 63(14), 2029-2044. https://doi.org/10.1016/S0266-3538(03)00106-4
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.