References
[1]. Altair OptiStruct Version 9.0. (2008). Altair Engineering Inc.
[2]. Gantovnik, V. B., Gürdal, Z., & Watson, L. T. (2000). A genetic algorithm with memory for optimal design of laminate sandwich composite panels. Composite Structures, 58, 513-520.
[3]. Grosset, L., LeRiche, R., & Haftka, R. T. (2006). A double-distribution statistical algorithm for composite laminate optimization. Struct Multidisc Optim, 31, 49-59.
[4]. Gürdal, Z., Haftka, R. T., & Hajela, P. (1999). Design and optimization of laminated composite materials. John Wiley & Sons.
[5]. Ijsselmuiden, S. T., Seresta, O., Abdalla, M. M., & Gürdal, Z. (2007). Multi-step stacking sequence design and blending of composite structures. 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea.
[6]. Ijsselmuiden, S. T., Abdalla, M. M., Seresta, O., & Gürdal, Z. (2009). Multi-step blended stacking sequence design of panel assemblies with buckling constraints. Composite: Part B, 40, 329-336.
[7]. Jones, R. M. (1999). Mechanics of composite materials, Second Edition, Taylor and Francis.
[8]. Keller, D. (2011). Global laminate optimization on geometrically partitioned shell structures. Structural and Multidisciplinary Optimization, 43, 353-368.
[9]. Kristinsdottir, B. P., Zabinsky, Z. B., Tuttle, M. E., & Neogi, S. (2001). Optimal design of large composite panels with varying loads. Composite Structures, 51, 93-102.
[10]. Liu, B., Haftka, R. T., Akgun, M. A., & Todoroki, A. (2000a). Permutation genetic algorithm for stacking sequence design of composite laminates. Comput. Methods Appl. Mech. Engrg, 186, 357 -372.
[11]. Liu, B., Haftka, R. T., & Akgun, M. A. (2000b). Two-level composite wing structural optimization using response surface. Struct Multidisc Optim, 20, 87-96.
[12]. Liu, B., & Haftka, R. T. (2001). Composite wing structural design optimization with continuity constraint. Proceedings of 42th AIAA SDM Conference, AIAA-2001-1205, Seattle, WA.
[13]. Liu, D., Toropov, V. V., Querin, O. M., & Barton, D. C. (2009a). Bi-level optimization of blended composite panels. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and 5th AIAA Multidisciplinary Design Optimization Specialist Conference, Palm Springs, CA, USA.
[14]. Liu, D., Toropov, V. V., Querin, O. M., & Barton, D. C. (2009b). Stacking sequence optimization of composite panels for blending characteristics using lamination parameters. 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal.
[15]. Liu, D., Toropov, V. V., Zhou, M., Barton, D. C., & Querin, O. M. (2010). Optimization of blended composite wing panels using smeared stiffness technique and lamination parameters. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and 6th AIAA Multidisciplinary Design Optimization Specialist Conference, Orlando, Florida, USA.
[16]. Liu, D., Toropov, V. V., Querin, O. M., & Barton, D. C. (2011). Bilevel optimization of blended composite wing panels, Journal of Aircraft, 48, 107-118.
[17]. Liu, W., & Butler, R. (2007). Optimum buckling design of composite wing cover panels with manufacturing constraints. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials conference, AIAA -2215,Honolulu, Hawaii, USA.
[18]. Liu, W., & Krog, L. (2008). A method for composite ply layout design and stacking sequence optimisation. Proceedings of 7th ASMO UK/ISSMO Conference, Bath, UK.
[19]. Nemeth, M. P. (1986). Importance of anisotropy on buckling of compression-loaded symmetric composite plates. AIAA Journal, 24, 1831-1835.
[20]. Niu, M. C. Y. (1992). Composite airframe structures: Practical design information and data. Conmilit Press Ltd., Hong Kong.
[21]. Schmit, L. A., & Farshi, B. (1973). Optimum laminate design for strength and stiffness. International Journal for Numerical Methods in Engineering, 7, 519-536.
[22]. Seresta, O., Gürdal, Z., Adams, D. B., & Watson, L. T. (2007). Optimal design of composite wing structures with blended laminates. Composites Part B: Engineering, 38, 469-480.
[23]. Seresta, O., Abdalla, M. M., & Gürdal, Z. (2009). A genetic algorithm based blending scheme for design of multiple composite laminates. 50th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Material Conference and 5th AIAA Multidisciplinary Design Optimization Specialist Conference, Palm Springs, CA, USA.
[24]. Soremekun, G. A., Gürdal, Z., Kassapoglou, C., & Toni, D. (2002). Stacking sequence blending of multiple composite laminates using genetic algorithm. Composite Structures, 56, 53-62.
[25]. Stroud, W. J., & Agranoff, N. (1976). Minimum mass design of filamentary composite panels under combined loads: Design procedure based on simplified equations. NASA TND-8257.
[26]. Toropov, V. V., Jones, R., Willment, T., & Funnell, M. (2005). Weight and manufacturability optimization of composite aircraft components based on a genetic algorithm. Proceedings of 6th World Congress of SMO, Brazil.
[27]. Tsai, S. W., Halpin, J. C., & Pagano, N. J. (1968). Composite materials workshop. Technomic publishing Co., Westport, Connecticut. 233-253.
[28]. Van Campen, J.M.J.F., Seresta, O., Abdalla, M. M., & Gürdal, Z. (2008). General blending definitions for stacking sequence design of composite laminate structures. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and 4th AIAA Multidisciplinary Design Optimization Specialist Conference, Schaumburg, IL, USA.
[29]. Zein, S., Colson, B., & Gribon, S. (2011). A primal-dual backtracking optimization method for blended composite structures. Structural and Multidisciplinary Optimization. DOI 10.1007/s00158-011-0716-x.
[30]. Zhou, M., & Fleury, R. (2007). Optimization of composite structures-understanding and meeting the challenges. Altair Composite Seminar, Royal Lemington Spa, UK.