References
[1]. Alam, M. R., & Faruque, S. (2015). Comparison of
different modulation techniques for free space laser
communication. In 2015, IEEE International Conference
on Electro/Information Technology (EIT) (pp. 637-640).
https://doi.org/10.1109/eit.2015.7293409
[2]. Alam, S. J., Alam, M. R., Hu, G., & Mehrab, M. Z.
(2011). Bit error rate optimization in fiber optic
communications. International Journal of Machine
Learning and Computing, 1(5), 435-440.
[3]. Alatawi, K., Almasoudi, F., & Matin, M. A. (2013).
Performance study of 1 tbits/s wdm coherent optical
ofdm system. Optics and Photonics Journal, 3(5), 330-
335. https://doi.org/10.4236/opj.2013.35051
[4]. Al-Habash, A., Andrews, L. C., & Phillips, R. L. (2001).
Mathematical model for the irradiance probability
density function of a laser beam propagating through
turbulent media. Optical Engineering, 40(8), 1554-1563.
https://doi.org/10.1117/1.1386641
[5]. Ali, M. A. A., & Ali, A. (2015). Performance analysis of
fog effect on free space optical communication system.
IOSR Journal of Applied Physics, 7(2), 16-24. https://doi.
org/10.9790/4861-07211624
[6]. Anita, R. H. V. (2019). Implementation of 5G In guided
and unguided optical communication system with
cellular frequency bands. International Journal of Trend in
Scientific Research and Development (IJTSRD), 3(6), 414-
416. https://doi.org/10.31142/ijtsrd28117
[7]. Anita, H. V., Princy, S. L. & Jenefer, W. (2020).
Assessment of RZ and NRZ coders in free space
multiplexing system with reduced attenuation effect and
increased Q factor. Our Heritage Journal, 68(1), 8930-
8936. https://doi.org/10.2139/ssrn.35316274
[8]. Arain, S., Shaikh, M. N., Waqas, A., Chowdhry, B. S., &
Themistos, C. (2016, July). Performance analysis of
advance modulation schemes for free space optical
networks. In 2016, 18th International Conference on
Transparent Optical Networks (ICTON) (pp. 1-4). IEEE. https://doi.org/10.1109/ICTON.2016.7550491
[9]. Arshad, M., & Ansari, M. A. (2013). Performance
analysis of dispersed manage RZ pulse. International
Journal of Scientific Research Publications, 3(12), 1-3.
[10]. Badar, N., & Jha, R. K. (2017). Performance
comparison of various modulation schemes over free
space optical (FSO) link employing Gamma–Gamma
fading model. Optical and Quantum Electronics, 49(5),
192. https://doi.org/10.1007/s11082-017-1025-4
[11]. Belmonte, A., & Kahn, J. M. (2009). Capacity of
coherent free-space optical links using diversitycombining
techniques. Optics Express, 17(15), 12601-
12611. https://doi.org/10.1364/OE.17.012601
[12]. Beri, B., & Kamal, N. (2014). WDM based FSO link
optimizing for 180km using bessel filter. International
Journal of Research in Engineering and Technology,
3(03), 110-115.
[13]. Bloom, S., Korevaar, E., Schuster, J., & Willebrand, H.
(2003). Understanding the performance of free-space
optics. Journal of optical Networking, 2(6), 178-200.
https://doi.org/10.1364/JON.2.000178
[14]. Bohata, J., Komanec, M., Spáčil, J., Ghassemlooy,
Z., Zvánovec, S., & Slavík, R. (2018). 24–26 GHz radioover-
fiber and free-space optics for fifth-generation
systems. Optics Letters, 43(5), 1035-1038. https://doi.
org/10.1364/OL.43.001035
[15]. Cai, J., Cai, Y., Davidson, C., Foursa, D., Lucero, A., &
Sinkin, O., Patterson, W. W., Pilipetskii, A. N., Mohs, G., &
Bergano, N. S. (2011). Transmission of 96 x 100-Gb/s
bandwidth-constrained PDM-RZQPSK channels with 300%
spectral efficiency over 10610 km and 400% spectral
efficiency over 4370 km. Journal of Lightwave
Technology, 29(4), 491-498. https://doi.org/10.1109/JLT.
2010.2093931
[16]. Cai, Y. (2006). Propagation of some coherent and
partially coherent laser beams (Doctoral dissertation)
Royal Institute of Technology, S-10044 Stockholm,
Sweden.
[17]. Chaudhary, S., & Amphawan, A. (2014). The role
and challenges of free-space optical systems. Journal of Optical Communications, 35(4), 327-334. https://doi.org/
10.1515/joc-2014-0004
[18]. Chávez-Santiago, R., Szydełko, M., Kliks, A., Foukalas,
F., Haddad, Y., Nolan, K. E., Kelly, M. Y., Masonta, M. T. &
Balasingham, I. (2015). 5 G: The convergence of wireless
communications. Wireless Personal Communications,
83(3), 1617-1642 https://doi. org/10.1007/s11277-015-
2467-2
[19]. Chawla, A., Mishra, S., & Aarthi, G. (2015).
Simulation research of free-space optical
communication based on linear polarization shift keying
modulation. ARPN Journal of Engineering and Applied
Sciences, 10(14), 6116-6120.
[20]. Dar, A. B., & Jha, R. K. (2017). Chromatic dispersion
compensation techniques and characterization of fiber
Bragg grating for dispersion compensation. Optical and
Quantum Electronics, 49(3), 108. https://doi.org/10.1007/
s11082-017-0944-4
[21]. David, F. (2004, June). Scintillation loss in free-space
optic IM/DD systems. International Society for Optics and
Photonics. 5338, 65-75. https://doi.org/10.1117/12.52
8832
[22]. Duvey, D., & Gupta, R. (2014). Review paper on
performance analysis of a free space optical system.
International Journal of Application or Innovation in
Engineering & Management, 3(6), 135-139.
[23]. Ennser, K., & Petermann, K. (1996). Peformance of
RZ-versus NRZ-transmission on standard single-mode
fibers. IEEE Photonics Technology,8(3), 443-445. https://
doi.org/10.1109/68.481144
[24]. Fadhil, H. A., Amphawan, A., Shamsuddin, H. A.,
Abd, T. H., Al-Khafaji, H. M., Aljunid, S. A., & Ahmed, N.
(2013). Optimization of free space optics parameters: An
optimum solution for bad weather conditions. Optik,
124(19), 3969-3973. https://doi.org/10.1016/j.ijleo.
2012.11.059
[25]. Fludger, C. R., Duthel, T., Van den Borne, D.,
Schulien, C., Schmidt, E. D., Wuth, T., Geyer, J., Khoe, G.
D. & de Waardt, H. (2008). Coherent equalization and
POLMUX-RZ-DQPSK for robust 100-GE transmission. Journal
of lightwave technology, 26(1), 64-72. https://doi.org/10.1109/JLT. 2007.912128
[26]. Forin, D. M., Incerti, G., Beleffi, G. T., Teixeira, A. L. J.,
Costa, L. N., Andrè, P. D. B., Geiger, S., Leitgeb, E., & Nadeem,
F. (2010). Free space optical technologies. In Trends in
Telecommunications Technologies, (pp 257-296).
[27]. Gebhart, M., Leitgeb, E., Birnbacher, U., & Schrotter,
P. (2004, June). Ethernet access network based on freespace
optic deployment technology. International
Society for Optics and Photonics. 5338, 131-142. https://
doi.org/10.1117/12.528590
[28]. Gnauck, A. H., & Winzer, P. J. (2005). Optical phaseshift-
keyed transmission. Journal of Lightwave
Technology, 23(1), 115-130.
[29]. Grabner, M., & Kvicera, V. (2013). Multiple scattering
in rain and fog on free-space optical links. Journal of
Lightwave Technology, 32(3), 513-520. https://doi.org/10.
1109/JLT.2013.2294356
[30]. Gupta, A., Anand, P., Khajuria, R., Bhagat, S., & Jha,
R. K. (2014). A sur vey of free space optical
communication network channel over optical fiber cable
communication. International Journal of Computer
Applications, 105(10), 32-36.
[31]. Hammadi, A. M., & Zghair, E. M. (2014). Transmission
performance analysis of three different channels in
optical communication systems. International Journal of
Scientific & Engineering Research, 5(2), 1615-1618.
[32]. Hanzra, T. S., & Singh, G. (2012). Performance of free
space optical communication system with BPSK and
QPSK modulation. IOSR Journal of Electronics and
Communication Engineering, 1(3), 38-43.
[33]. He, J., Cao, Z., Chen, L., & Wen, S. (2010). Full-duplex
radio-over-fiber system with quadrature-amplitudemodulation
photonically generated orthogonal
frequency-division multiplexing signals. Optical
Engineering, 49(6), 1-5. https://doi.org/10.1117/1.34
54384
[34]. Henniger, H., & Wilfert, O. (2010). An introduction to
free-space optical communications. Radio Engineering,
19(2), 203-212.
[35]. Huang, X. H., Li, C. Y., Lu, H. H., Su, C. W., Wu, Y. R., Wang, Z. H., & Chen, Y. N. (2018). WDM free-space optical
communication system of high-speed hybrid signals. IEEE
Photonics Journal, 10(6), 1-7. https://doi.org/10.1109/
JPHOT.2018.2881701
[36]. Iiyas, M. S. B., Rehman, A., &.Ibrahim, J. (2016).
Per formance analysis of conventional diversity
combining schemes over nakagami-m fading channel.
International Journal of Computer Science and
Information Security (IJCSIS), 14(8), 320-324.
[37]. Indira, N. S., Sony, K., Nagendram, S., Teja, P. R., Tej,
G. H., & Kumar, E. P. (2017). A novel position estimation of
gps receiver utilizing extended kalman filter. Journal of
Advanced Research in Dynamical and Control Systems,
14, 2695-2701.
[38]. Ismail, T., Leitgeb, E., & Plank, T. (2016). Free space
optic and mmWave communications: technologies,
challenges and applications. IEICE Transactions on
Communications, 99(6), 1243-1254. https://doi.org/10.
1587/transcom.2015EUI0002
[39]. Jabeena, A., & Saxena, S. (2015). Performance of
FSO links using various modulation techniques and cloud
effect. International Journal of Engineering Research and
General Science, 3(2), 616-621.
[40]. Jangir, P., Suman, B., & Chaudhary, R. (2014). Free
space optical interconnects security aspects of future
high speed technology. International Journal of
Computer Applications, 95(11), 39-42.
[41]. Jangir, P., Suman, B., & Chaudhary, R. (2014). Survey
on performance of free space optical communication
links under various field parameters. IOSR Journal of
Electrical and Electronics Engineering, 9(2), 71-75.
[42]. Jarangal, E., & Dhawan, D. (2018). Comparison of
channel models based on Atmospheric turbulences of
FSO system-A Review. International Journal of Research in
Electronics and Computer Engineering (IJRECE), 6(1),
282-286.
[43]. Jaswal, A., Singh, P. K., & Singh, Y. (2016). 5G: Survey
of technologies and challenges. International Journal of
Latest Trends in Engineering and Technology, 1-5.
[44]. Jawla, S., & Singh, R. K. (2013). Phase-shift modulation formats in optical communication system.
International Journal of Advancements in Research &
Technology, 2(11), 72-76.
[45]. Juan, W. (2016). Research on the modulation mode
of wireless optical communication technology. In 2nd
International Conference on Advances in Mechanical
Engineering and Industrial Informatics (AMEII 2016), (pp
223-226).
[46]. Jyoti, D., Kaur, B., & Singh, K. (2014). Light polarized
coherent OFDM free space optical system. International
Journal of Information and Computation Technology,
4(14), 1367-1372.
[47]. Kasper, B. L., Mizuhara, O., & Chen, Y. K. (2002). High
bit-rate receivers, transmitters, and electronics. In Optical
Fiber Telecommunications IV-A (pp. 784-851). https://doi.
org/10.1016/B978-012395172-4/50016-4
[48]. Kaur, S., Srivastava, M., & Bhatia, K. S. (2015). Radio
over fiber technology: A review. In International
Conference of Technology, Management and Social
Sciences (Vol.5, No. 7, pp. 85-88).
[49]. Kaur, G., Singh, H., & Sappal, A. S. (2017). Free space
optical using different modulation techniques–A Review.
International Journal of Engineering Trends and
Technology (IJETT), 43(2), 109-115. https://doi.org/10.
14445/22315381/IJETT-V43P218
[50]. Kaur, H., & Soni, G. (2015). Performance analysis of
free space optical communication link using different
modulation and wavelength. Journal of Scientific
Research and Reports, 6(3), 201-209. https://doi.org/10.
9734/JSRR/2015/15503
[51]. Kaur, J., & Kaur, M. (2017). Review of WDM based free
space optics communication system. International
Journal of Advanced Research in Computer Science,
8(4), 286-288.
[52]. Kaushal, H., & Kaddoum, G. (2015). Free space
optical communication: challenges and mitigation
techniques. Cornell University (pp 1-28).
[53]. Kaushal, H., Jain, V. K., & Kar, S. (2017). Free Space
Optical Communication (Vol.1). Gurgaon, Haryana:
Springer. https://doi.org/10.1007/978-81-322-3691-7
[54]. Khalighi, M. A., & Uysal, M. (2014). Survey on free
space optical communication: A communication theory
perspective. IEEE Communications Surveys & Tutorials,
16(4), 2231-2258. https://doi.org/10.1109/COMST.2014.
2329501
[55]. Kim, I. I., & Korevaar, E. J. (2001, November).
Availability of Free-space optics (FSO) and hybrid FSO/RF
systems. International Society for Optics and Photonics. (Vol. 4530, pp. 84-95). https://doi.org/10.1117/12.449800
[56]. Kim, I. I., McArthur, B., & Korevaar, E. J. (2001,
February). Comparison of laser beam propagation at
785 nm and 1550 nm in fog and haze for optical wireless
communications. In Optical Wireless Communications III,
(Vol. 4214, pp. 26-37). International Society for Optics and
Photonics. https://doi.org/10.1117/12.417512
[57]. Kuzhaloli, S., & Shaji, K. S. (2015). Performance
analysis of MC-CDMA system in rayleigh channel using
qpsk modulation. Indian Journal of Computer Science
and Engineering, 6(1), 11-13.
[58]. Lee, H. (2017). Comments on performance analysis
of coherent free-space optical systems with multiple
receivers. IEEE Photonics Technology Letters, 29(24),
2262-2263. https://doi.org/10.1109/LPT.2017.2768359
[59]. Leitgeb, E., Bregenzer, J., Gebhart, M., Fasser, P., &
Merdonig, A. (2003, July). Free-space optics: Broadband
wireless supplement to fiber networks. International
Society for Optics and Photonics. (Vol. 4975, pp. 57-68). https://doi.org/10.1117/12.483832
[60]. Leitgeb, E., Muhammad, S. S., Gebhart, M., &
Chlestil, C. (2005). Hybrid wireless networks combining
WLAN, FSO and satellite technology for disaster recovery.
CiteSeerX. (pp. 1-5).
[61]. Letzepis, N., Holland, I., & Cowley, W. (2008). The
gaussian free space optical MIMO channel with Q-ary
pulse position modulation. IEEE Transactions on Wireless
Communications, 7(5), 1744-1753. https://doi.org/10.
1109/TWC.2008.061002
[62]. Li, T., Zhang, J., Yi, H., Tan, W., Long, Q., Zhou, Z.,
Wang, X. & Wu, H. (2013). Low-voltage, high speed,
compact silicon modulator for BPSK modulation. Optics
Express, 21(20), 23410-23415. https://doi.org/10.1364/ OE.21.023410
[63]. Lin, H. S., & Lai, P. C. (2013). Single Mach-Zehnder
modulator with RZ-DPSK modulation signal in 48 Chs× 40
Gbit/s long haul DWDM transmission. Journal of Optical
Communications, 34(3), 155-160. https://doi.org/10.15
15/joc-2013-0009
[64]. Lin, H. S., & Lai, P. C. (2017). DWDM Transmission with
LEAF and RDF Structure in 40 Gb/s Single MZM with RZ-DPSK
Modulation. Journal of Optical Communications, 38(1),
41-46. https://doi.org/10.1515/joc-2015-0087
[65]. Magidi, S., & Jabeena, A. (2018). Review on
wavelength division multiplexing free space optics.
Journal of Optical Communications, 1-14. https://
doi.org/10.1515/joc-2017-0197
[66]. Majumdar, A. K. (2015). Theory of Free-Space
Optical (FSO) Communication Signal Propagation
Through Atmospheric Channel. In Advanced Free Space
Optics (FSO) (pp. 21-67). New York, NY: Springer, https://
doi.org/10.1007/978-1-4939-0918-6_2
[67]. Malik, A., & Singh, P. (2015). Free space optics:
current applications and future challenges. International
Journal of Optics, 2015, 1-7. https://doi.org/10.1155/
2015/945483
[68]. Miglani, R. (2013). Analysis of FSO communication
links for mid and far infrared wavelengths. International
Journal of Scientific &Engineering Research, 4(7).
[69]. Mitchell, J. E. (2009). Radio-over-fiber (RoF) networks.
In Broadband Access Networks (pp. 283-300). Boston, MA: Springer. https://doi.org/10.1007/978-0-387-92131-0
[70]. Nadeem, F., Kvicera, V., Awan, M. S., Leitgeb, E.,
Muhammad, S. S., & Kandus, G. (2009). Weather effects
on hybrid FSO/RF communication link. IEEE Journal on
Selected Areas in Communications, 27(9), 1687-1697.
https://doi.org/10.1109/JSAC.2009.091218
[71]. Nadeem, L., Qazi, M. S., & Hassam, A. (2018).
Performance of FSO links using CSRZ, RZ, and NRZ and
effects of atmospheric turbulence. Journal of Optical
Communications, 39(2), 191-197. https://doi.org/10.
1515/joc-2016-0113
[72]. Neha, & Kumar, S. S. (2016). Free Space Optical Communication: A Review. In 3rd International
Conference on Recent Innovation in Science,
Technology and Management (ICRISTM-16) (pp 79-83).
[73]. Nitesh, G., Kumar, R. S. P., & Khan, M. A. J. (2015).
Performance analysis of a free space optics link with variation
in distance along with multiple transmitters/receivers.
International Journal for Scientific Research and
Development, 3(3), 254-258.
[74]. Noor, N. H. M., Naji, A. W., & Al-Khateeb, W. (2012).
Performance analysis of a free space optics link with
multiple transmitters/receivers. IIUM Engineering Journal,
13(1). https://doi.org/10.31436/iiumej.v13i1.271
[75]. Park, J., Lee, E., Chae, C. B., & Yoon, G. (2015).
Impact of pointing errors on the performance of coherent
free-space optical systems. IEEE Photonics Technology
Letters, 28(2), 181-184. https://doi.org/10.1109/LPT.
2015.2489383
[76]. Pesek, J., Ijaz, M., Ghassemlooy, Z., Fiser, O., &
Rajbhandari, S. (2012, September). Measuring the fog
attenuation in an indoor free space optical laboratory
chamber. In 2012, International Conference on Applied
Electronics (pp. 203-206). IEEE.
[77]. Popoola, W. O., & Ghassemlooy, Z. (2009). BPSK
subcarrier intensity modulated free-space optical
communications in atmospheric turbulence. Journal of
Lightwave Technology, 27(8), 967-973.
[78]. Prokes, A., & Skorpil, V. (2009, September).
Estimation of free space optics systems availability based
on meteorological visibility. In 2009 IEEE Latin-American
Conference on Communications (pp. 1-4). IEEE. https://
doi.org/10.1109/LATINCOM.2009.5305266
[79]. Rao, G. S., & Alemayehu, H. (2016). Loss calculation
in free space optical communications. International
Journal of Engineering Research and Application, 6(6),
49-51.
[80]. Raut, P. W., & Badjate, S. L. (2013). Diversity
techniques for wireless communication. International
Journal of Advanced Research in Engineering and
Technology (IJARET), 4(2), 144-160.
[81]. Roy, R., & Babu, J. S. (2015a). Performance analysis of multiple tx/rx free space optical system under
atmospheric disturbances. International Journal Of
Engineering Research & Technology, 4(1), 445-447.
[82]. Roy, R., & Babu, J. S. (2015b). Simulation and
performance analysis of free space optical systems using
multiple TX/RX and polarized CO-OFDM techniques under
atmospheric disturbances. International Journal of
Engineering Research and General Science, 3(1), 743-
749.
[83]. Sadiku, M. N., Musa, S. M., & Nelatury, S. R. (2016).
Free space optical communications: An overview.
European Scientific Journal, 12(9), 55-68. https://doi.
org/10.19044/esj.2016.v12n9p55
[84]. Sawhil, Agarwal, S., Singhal, Y., & Bhardwaj, P.
(2018). An overview of free space optical
communication. International Journal of Engineering
Trends and Technology (IJETT), 55(3), 120-125.
https://doi.org/10.14445/22315381/IJETT-V55P223
[85]. Sharma, A., Sharma, S., Singh, I., & Bhattacharya, S.
(2017). Simulation and analysis of dispersion
compensation using proposed hybrid model at 100 Gbps
over 120Km using SMF. International Journal of
Mechanical Engineering and Technology (IJMET), 8(12),
600-607.
[86]. Sharma, V. (2014). High speed CO-OFDM-FSO
transmission system. Optik, 125(6), 1761-1763. https://doi.
org/10.1016/j.ijleo.2013.10.010
[87]. Sharma, V., & Kaur, G. (2012). Degradation
measures in free space optical communication (FSO)
and its mitigation techniques–A review. International
Journal of Computer Applications, 55(1), 23-27.
[88]. Sharma, V., & Kaur, G. (2013). High speed, long
reach OFDM-FSO transmission link incorporating OSSB and
OTSB schemes. Optik, 124(23), 6111-6114. https://doi.org/
10.1016/j.ijleo.2013.04.100
[89]. Shieh, W., Bao, H., & Tang, Y. (2008). Coherent
optical OFDM: Theory and design. Optics express, 16(2),
841-859. https://doi.org/10.1364/OE.16.000841
[90]. Singh, J., & Kapoor, V. (2011). Design and analysis of
high speed free space optical communication link with different parameter. International Journal of Computer
Applications on Communication and Networks, (1)24-27.
[91]. Singh, N. S., & Singh, G. (2013). Performance
evaluation of log-normal and negative exponential
channel modeling using various modulation techniques
in OFDM-FSO communication. International Journal of
Computers & Technology, 4(2), 639-647.
[92]. Singh, R., Sharma, N. K., & Beni, B. (2016). Simulation
and performance analysis of free space optical system
using bessel filter under different atmospheric
disturbances. International Journal of Engineering Trends
and Technology (IJETT), 38(1).
[93]. Son, I. K., & Mao, S. (2017). A survey of free space
optical networks. Digital communications and networks,
3(2), 67-77. https://doi.org/10.1016/j.dcan.2016.11.002
[94]. Vanderka, A., Hajek, L., Bednarek, L., Latal, J.,
Vitasek, J., Hejduk, S., & Vasinek, V. (2016, September).
Testing FSO WDM communication system in simulation
software optiwave opti system in different atmospheric
environments. In Laser Communication and Propagation
through the Atmosphere and Oceans V, (Vol. 9979, pp. 1-
9). International Society for Optics and Photonics. https://
doi.org/10.1117/12.2237903
[95]. Vavoulas, A., Sandalidis, H. G., & Varoutas, D.
(2012). Weather effects on FSO network connectivity.
IEEE/OSA Journal of Optical Communications and
Networking, 4(10), 734-740. https://doi.org/10.1364/
JOCN.4.000734
[96]. Wahab, F. A., Leong, T. K., Zulkifli, H., Ibrahim, M. I.,
Talib, M. A., Zamri, N. A., & Ibrahim, O. K. (2016). Multiple
transmitters & receivers for free space optical
communication link performance analysis. Journal of
Telecommunication, Electronic and Computer
Engineering (JTEC), 8(5), 29-32.
[97]. Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y.,
Yuan, D., Aggoune, H. M., Haas, H., Fletcher, S. &
Hepsaydir, E. (2014a). Cellular architecture and key
technologies for 5G wireless communication networks.
IEEE Communications Magazine, 52(2), 122-130.
https://doi.org/10.1109/MCOM.2014.6736752
[98]. Wang, N., Song, X., Cheng, J., & Leung, V. C. (2014b, December). Secret key agreement for freespace
optical communications over strong turbulence
channels. In 2014 IEEE Global Communications
Conference (pp. 2078-2083). IEEE. https://doi.org/10.
1109/GLOCOM. 2014.7037114
[99]. Wang, Z., Zhong, W. D., Fu, S., & Lin, C. (2009).
Performance comparison of different modulation formats
over free-space optical (FSO) turbulence links with space
diversity reception technique. IEEE Photonics Journal,
1(6), 277-285. https://doi.org/10.1109/JPHOT.
2009.2039015
[100]. Xie, G., Dang, A., & Guo, H. (2011, June). Effects of
atmosphere dominated phase fluctuation and intensity
scintillation to DPSK system. In 2011 IEEE International
Conference on Communications (ICC) (pp. 1-6). IEEE.
https://doi.org/10.1109/icc.2011.5962740
[101]. Yao, S., Fu, S., Wang, H., Tang, M., Shum, P., & Liu, D.
(2014). Performance comparison for NRZ, RZ, and CSRZ
modulation formats in RS-DBS Nyquist WDM system.
IEEE/OSA Journal of Optical Communications and
Networking, 6(4), 355-361. https://doi.org/10.1364/
JOCN.6.000355
[102]. Yeaseen, M. H., Azam, F., Saha, S., & Islam, A. K. M.
(2015, December). Free-space optical communication
with BPSK subcarrier intensity modulation in presence of
th atmospheric turbulence and pointing error. In 2015, 18
International Conference on Computer and Information
Technology (ICCIT) (pp. 516-521). IEEE. https://doi.org/10.
1109/ICCITechn.2015.7488125
[103]. Yi, X., Fontaine, N. K., Scott, R. P., & Yoo, S. B. (2010).
Tb/s coherent optical OFDM systems enabled by optical
frequency combs. Journal of Lightwave Technology,
28(14), 2054-2061. https://doi.org/10.1109/JLT.2010.
2053348
[104]. You, R., & Kahn, J. M. (2002). Upper-bounding the
capacity of optical IM/DD channels with multiple-subcarrier
modulation and fixed bias using trigonometric moment
space method. IEEE Transactions on Information Theory,
48(2), 514-523. https://doi.org/10.1109/18. 979327
[105]. Zarganis, K. E., & Hatziefremidis, A. (2015).
Performance analysis of coherent optical OFDM applied to
UAV mobile FSO systems. American Journal of Optics and
Photonics, 3(1), 5-12. https://doi.org/10.11648/j.ajop.
20150301.12