References
[1]. Bose, B. K. (2010). Power Electronics and Motor Drives: Advances and Trends. Elsevier.
[2]. Chowdhury, B. H., & Chellapilla, S. (2006). Double-fed induction generator control for variable speed wind power generation. Electric Power Systems Research, 76(9-10), 786- 800.
[3]. Ekanayake, J. B., Holdsworth, L., & Jenkins, N. (2003). Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research, 67(3), 207-215.
[4]. Hasanien, H. M., & Al-Ammar, E. A. (2012). Dynamic response improvement of doubly fed induction generatorbased wind farm using fuzzy logic controller. Journal of Electrical Engineering, 63(5), 281-288.
[5]. Hu, J. B., & He, Y. K. (2007). Multi-frequency proportionalresonant (MFPR) current controller for PWM VSC under unbalanced supply conditions. Journal of Zhejiang University- Science A, 8(10), 1527-1531.
[6]. Hu, J. B., Zhang, W., Wang, H. S., He, Y. K., & Xu, L. (2009). Proportional integral plus multi-frequency resonant current controller for grid-connected voltage source converter under imbalanced and distorted supply voltage conditions. Journal of Zhejiang University-Science A, 10(10), 1532-1540.
[7]. Jabr, H. M., & Kar, N. C. (2007, October). Neuro-fuzzy vector control for doubly-fed wind driven induction generator. In 2007, IEEE Canada Electrical Power Conference (pp. 236- 241). IEEE.
[8]. Karimi-Davijani, H., Sheikholeslami, A., Livani, H., & Karimi- Davijani, M. (2009). Fuzzy logic control of doubly fed induction generator wind turbine. World Applied Sciences Journal, 6(4), 499-508.
[9]. Kusagur, A., Kodad, S. F., & Ram, B. S. (2010). Modeling, design & simulation of an adaptive neuro-fuzzy inference system (ANFIS) for speed control of induction motor. International Journal of Computer Applications, 6(12), 29-44.
[10]. Le, V., Li, X., Li, Y., Dong, T. L. T., & Le, C. (2016). An innovative control strategy to improve the fault ride-through capability of DFIGs based on wind energy conversion systems. Energies, 9(2), 1-23.
[11]. Ling, Y. (2016). The fault ride through technologies for doubly fed induction generator wind turbines. Wind Engineering, 40(1), 31-49.
[12]. Lopez, J., Gubia, E., Sanchis, P., Roboam, X., & Marroyo, L. (2008). Wind turbines based on doubly fed induction generator under asymmetrical voltage dips. IEEE Transactions on Energy Conversion, 23(1), 321-330.
[13]. Mishra, J. P., Hore, D., & Rahman, A. (2011, May). Fuzzy logic based improved active and reactive power control th operation of DFIG for wind power generation. In 8 International Conference on Power Electronics-ECCE Asia (pp. 654-661). IEEE.
[14]. Mokryani, G., Siano, P., Piccolo, A., & Calderaro, V. (2012). A fuzzy logic controller to increase fault ride-through capability of variable speed wind turbines. Applied Computational Intelligence and Soft Computing. https://doi.org/10. 1155/2012/405314
[15]. Niiranen, J. (2004, March). Voltage dip ride through of a doubly-fed generator equipped with an active crowbar. In Nordic Wind Power Conference (Vol. 1).
[16]. Pena, R., Clare, J. C., & Asher, G. M. (1996). Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings-Electric Power Applications, 143(3), 231-241.
[17]. Phan, V. T., & Lee, H. H. (2010). Enhanced Proportional- Resonant current controller for Unbalanced Standalone DFIG Based Wind Turbines. Journal of Electrical Engineering and Technology, 5(3), 443-450.
[18]. Tapia, A., Tapia, G., Ostolaza, J. X., & Saenz, J. R. (2003). Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Transactions on Energy Conversion, 18(2), 194-204.
[19]. Vas, P. (1990). Vector Control of AC Machines (Vol. 22). USA: Oxford University Press.
[20]. Vrionis, T. D., Koutiva, X. I., & Vovos, N. A. (2014). A Genetic Algorithm-Based Low Voltage Ride-Through Control Strategy for Grid Connected Doubly Fed Induction Wind Generators. IEEE Transactions on Power Systems, 3(29), 1325-1334.
[21]. Wang, M., Shi, Y., Zhang, Z., Shen, M., & Lu, Y. (2017). Synchronous flux weakening control with flux linkage prediction for doubly-fed wind power generation systems. IEEE Access, 5, 5463-5470.
[22]. Wang, Y., & Xu, L. (2007, May). Control of DFIG-based wind generation systems under unbalanced network supply. In 2007 IEEE International Electric Machines & Drives Conference (Vol. 1, pp. 430-435). IEEE.
[23]. Xiao, S., Yang, G., Zhou, H., & Geng, H. (2013). An LVRT Control Strategy Based on Flux Linkage Tracking for DFIG-Based WECS. IEEE Transactions on Industrial Electronics, 7(60), 2820- 2832.
[24]. Xu, L., & Cartwright, P. (2006). Direct active and reactive power control of DFIG for wind energy generation. IEEE Transactions on Energy Conversion, 21(3), 750-758.
[25]. Xu, L., & Wang, Y. (2007). Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions. IEEE Transactions on Power Systems, 22(1), 314-323.
[26]. Yan, Y., Wang, M., Song, Z. F., & Xia, C. L. (2012). Proportional-resonant control of doubly-fed induction generator wind turbines for low-voltage ride-through enhancement. Energies, 5(11), 4758-4778.
[27]. Zheng, X., & Guo, D. (2011). A novel ride-through control strategy of DFIG wind generator under grid voltage dip. Journal of Information & Computational Science, 8(3), 579–591.