Modified Intuitionistic M-Fuzzy Metric Space and Some Common Fixed-Point Theorems

0*, Shailesh Dhar Diwan**
* Department of Applied Mathematics, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, Chhattisgarh, India.
** Department of Applied Mathematics, Government Engineering College, Raipur, Chhattisgarh, India.
Periodicity:July - September'2019
DOI : https://doi.org/10.26634/jmat.8.3.16954

Abstract

In this paper, we modified the idea of M-fuzzy metric space defined in the work “A common fixed point theorem in two M- fuzzy metric spaces” by Sedghi and Shobein, published in the year 2007, with intuitionistic fuzzy metric space and we present the notion of modified intuitionistic M-fuzzy metric space with the help of continuous t-representable. We also prove some common fixed-point theorems for modified intuitionistic M-fuzzy metric space.

Keywords

D-Metric Space, Modified Intuitionistic Fuzzy Metric Space, T-Norm, T-Conorm, T-Representable, L*Space, Implicit Relation.

How to Cite this Article?

Sharma, P., and Diwan, S. D. (2019). Modified Intuitionistic M-Fuzzy Metric Space and Some Common Fixed-Point Theorems. i-manager's Journal on Mathematics, 8(3), 10-16. https://doi.org/10.26634/jmat.8.3.16954

References

[1]. Atanassov, K. (1986). Intutionistic fuzzy metric spaces. Fuzzy Sets and System, 20, 87-96.
[2]. Beloul, S., & Tomar, A. (2019). Integral type common fixed point theorems in modified intuitionistic fuzzy metric spaces. Afrika Matematika, 30(3-4), 581-596. https://doi.org/10.1007%2Fs13370-019-00668-1
[3]. Chauhan, S., Imdad, M., & Samet, B. (2013). Coincidence and common fixed point theorems in modified intuitionistic fuzzy metric spaces. Mathematical and Computer Modelling, 58(3-4), 898-906. https://doi.org/10.1016/j.mcm.2013. 03.010
[4]. Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems, 133(2), 227-235. https://doi.org/10.1016/S0165-0114(02)00127-6
[5]. Deschrijver, G., Cornelis, C., & Kerre, E. E. (2004). On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Transactions on Fuzzy Systems, 12(1), 45-61. https://doi.org/10.1109/TFUZZ.2003.822678
[6]. Deshpande, B., & Handa, A. (2013). Fixed point theorems on modified intuitionistic fuzzy quasi-metric spaces with applications to the domain of words. Annals of Fuzzy Mathematics and Informatics, 6(1), 17-31.
[7]. Dhage, B. C. (1992). Generalised metric space and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, 84(4), 329- 336.
[8]. George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
[9]. Gregori, V., Romaguera, S., &Veereamani, P. (2006). A note on intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 28, 902-905. https://doi.org/10.1016/j.chaos.2005.08.113
[10]. Kramosil, I., & Michálek, J. (1975). Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), 336-344.
[11]. Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22(5), 1039-1046. https://doi.org/10.10 16/j.chaos.2004.02.051
[12]. Saadati, R., & Park, J. H. (2006). On the intuitionistic fuzzy topological spaces. Chaos, Solitons & Fractals, 27(2), 331- 344. https://doi.org/10.1016/j.chaos.2005.03.019
[13]. Saadati, R., Sedghi, S., & Shobe, N. (2008). Modified intuitionistic fuzzy metric spaces and some fixed point theorems. Chaos, Solitons & Fractals, 38(1), 36-47. https://doi.org/10.1016/j.chaos.2006.11.008
[14]. Sedghi, S., & Shobe, N. (2007). A common fixed point theorem in two M-fuzzy metric spaces. Communications-Korean Mathematical Society, 22(4), 513.
[15]. Tanveer, M., Imdad, M., Gopal, D., & Patel, D. K. (2012). Common fixed point theorems in modified intuitionistic fuzzy metric spaces with common property (EA). Fixed Point Theory and Applications, 2012(1), 36.https://doi.org/10.1186/1687- 1812-2012-36
[16]. Turkoglu, D., Alaca, C., & Yildiz, C. (2006). Compatible maps and compatible maps of types (α) and (β) in intuitionistic fuzzy metric spaces. Demonstratio Mathematica, 39(3), 671-684. https://doi.org/10.1515/dema-2006-0323
[17]. Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 135(3), 415-417. https://doi.org/10.1016/S0165-0114(02)00132-X
[18]. Zadeh, L. A. (1965). Fuzzy Sets, Information and Control. 8(3), pp. 338-353. https://doi.org/10.1016/S0019-9958(65) 90241-X
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.