References
[1]. Atanassov, K. (1986). Intutionistic fuzzy metric spaces. Fuzzy Sets and System, 20, 87-96.
[2]. Beloul, S., & Tomar, A. (2019). Integral type common fixed point theorems in modified intuitionistic fuzzy metric spaces.
Afrika Matematika, 30(3-4), 581-596. https://doi.org/10.1007%2Fs13370-019-00668-1
[3]. Chauhan, S., Imdad, M., & Samet, B. (2013). Coincidence and common fixed point theorems in modified intuitionistic
fuzzy metric spaces. Mathematical and Computer Modelling, 58(3-4), 898-906. https://doi.org/10.1016/j.mcm.2013.
03.010
[4]. Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and
Systems, 133(2), 227-235. https://doi.org/10.1016/S0165-0114(02)00127-6
[5]. Deschrijver, G., Cornelis, C., & Kerre, E. E. (2004). On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE
Transactions on Fuzzy Systems, 12(1), 45-61. https://doi.org/10.1109/TFUZZ.2003.822678
[6]. Deshpande, B., & Handa, A. (2013). Fixed point theorems on modified intuitionistic fuzzy quasi-metric spaces with
applications to the domain of words. Annals of Fuzzy Mathematics and Informatics, 6(1), 17-31.
[7]. Dhage, B. C. (1992). Generalised metric space and mappings with fixed point. Bulletin of the Calcutta Mathematical
Society, 84(4), 329- 336.
[8]. George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399.
https://doi.org/10.1016/0165-0114(94)90162-7
[9]. Gregori, V., Romaguera, S., &Veereamani, P. (2006). A note on intuitionistic fuzzy metric spaces. Chaos, Solitons &
Fractals, 28, 902-905. https://doi.org/10.1016/j.chaos.2005.08.113
[10]. Kramosil, I., & Michálek, J. (1975). Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), 336-344.
[11]. Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22(5), 1039-1046. https://doi.org/10.10
16/j.chaos.2004.02.051
[12]. Saadati, R., & Park, J. H. (2006). On the intuitionistic fuzzy topological spaces. Chaos, Solitons & Fractals, 27(2), 331-
344. https://doi.org/10.1016/j.chaos.2005.03.019
[13]. Saadati, R., Sedghi, S., & Shobe, N. (2008). Modified intuitionistic fuzzy metric spaces and some fixed point theorems.
Chaos, Solitons & Fractals, 38(1), 36-47. https://doi.org/10.1016/j.chaos.2006.11.008
[14]. Sedghi, S., & Shobe, N. (2007). A common fixed point theorem in two M-fuzzy metric spaces. Communications-Korean
Mathematical Society, 22(4), 513.
[15]. Tanveer, M., Imdad, M., Gopal, D., & Patel, D. K. (2012). Common fixed point theorems in modified intuitionistic fuzzy
metric spaces with common property (EA). Fixed Point Theory and Applications, 2012(1), 36.https://doi.org/10.1186/1687-
1812-2012-36
[16]. Turkoglu, D., Alaca, C., & Yildiz, C. (2006). Compatible maps and compatible maps of types (α) and (β) in intuitionistic
fuzzy metric spaces. Demonstratio Mathematica, 39(3), 671-684. https://doi.org/10.1515/dema-2006-0323
[17]. Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and
Systems, 135(3), 415-417. https://doi.org/10.1016/S0165-0114(02)00132-X
[18]. Zadeh, L. A. (1965). Fuzzy Sets, Information and Control. 8(3), pp. 338-353. https://doi.org/10.1016/S0019-9958(65)
90241-X