A Study of Anti Spoofing: Vital in Face Recognition Systems

Tanvi Joshi*
Department of Computer Science, Saffrony Institute of Technology, Gujarat, India.
Periodicity:September - November'2019
DOI : https://doi.org/10.26634/jpr.6.3.16927

Abstract

Face recognition is the second most widely used biometric approach after fingerprint. The applications of Face recognition are widely accepted and finding their space either at an organization or individual level due its adaptability among the people. But FR systems are vulnerable to spoofing attacks made by non-real human faces. Liveness detection is required for a secure program to protect against such spoofing. In this work, face liveness detection approaches are categorized based on types of techniques used for liveness detection. This classification helps in understanding various spoof attack scenarios and their relation to the formed solutions. A review of the previous works respect to face liveness detection is presented. The main objective is to outline the future development of a new and more secure liveness detection approach for face.

Keywords

Anti-Spoofing, Liveness Detection, Face Recognition, Face Biometric, Face Spoofing.

How to Cite this Article?

Joshi, T. (2019). A Study of Anti Spoofing: Vital in Face Recognition Systems. i-manager’s Journal on Pattern Recognition, 6(3), 37-49. https://doi.org/10.26634/jpr.6.3.16927

References

[1]. Albu, R. D. (2015, June). Face anti-spoofing based on Radon transform. In 2015, 13th International Conference on Engineering of Modern Electric Systems (EMES) (pp. 1-4). IEEE.
[2]. Ali, A., Deravi, F., & Hoque, S. (2012, September). Liveness detection using gaze collinearity. In 2012, Third International Conference on Emerging Security Technologies (pp. 62-65). IEEE. https://doi.org/10.1109/E ST.2012.12
[3]. Alotaibi, A., & Mahmood, A. (2016, June). Enhancing computer vision to detect face spoofing attack utilizing a single frame from a replay video attack using deep learning. In 2016, International Conference on Optoelectronics and Image Processing (ICOIP) (pp. 1-5). IEEE. https://doi.org/10.1109/OPTIP.20 16.7528488
[4]. Anjos, A., Chakka, M. M., & Marcel, S. (2013). Motion-based counter-measures to photo attacks in face recognition. IET biometrics, 3(3), 147-158. https://doi.org/1 0.1049/iet-bmt.2012.0071
[5]. Arashloo, S. R., Kittler, J., & Christmas, W. (2015). Face spoofing detection based on multiple descriptorfusion using multiscale dynamic binarized statistical image features. IEEE Transactions on Information Forensics and Security, 10 (11) , 2396 - 2407 . https://doi.org/10.1109/TIFS. 2015.2458700
[6]. Asaduzzaman, A., Mummidi, A., Mridha, M. F., & Sibai, F. N. (2015, December). Improving facial recognition accuracy by applying liveness monitoring technique. In 2015, International Conference on Advances in Electrical Engineering (ICAEE) (pp. 133-136). IEEE. https://doi.org/ 10.1109/ IC AEE.2015.7506814
[7]. Bao, W., Li, H., Li, N., & Jiang, W. (2009, April). A liveness detection method for face recognition based on optical flow field. In 2009, International Conference on Image Analysis and Signal Processing (pp. 233-236). IEEE. https://doi.org/10.1109/IASP.2009.5054589
[8]. Bharadwaj, S., Dhamecha, T. I., Vatsa, M., & Singh, R. (2013). Computationally efficient face spoofing detection with motion magnification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 105-110).
[9]. Bhardwaj, P., Debbarma, S., Deb, S., Debbarma, N., & Pal, J. (2012). Liveness detection using eye blink a case study. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 1(3), 21-28.
[10]. Boulkenafet, Z., Komulainen, J., &Hadid, A. (2015, September). Face anti-spoofing based on color texture analysis. In 2015, IEEE International Conference on Image Processing (ICIP) (pp. 2636-2640). IEEE. https://doi.org /10.1109/ICIP.2015.7351280
[11]. Boulkenafet, Z., Komulainen, J., & Hadid, A. (2016). Face spoofing detection using colour texture analysis. IEEE Transactions on Information Forensics and Security, 11(8), 1818-1830. https://doi.org/10.1109/TIFS.2016.25 55286
[12]. Chingovska, I., Anjos, A., & Marcel, S. (2012, September). On the effectiveness of local binary patterns in face anti-spoofing. In 2012, BIOSIG-proceedings of the international Conference of Biometrics Special Interest Group (BIOSIG) (pp. 1-7). IEEE.
[13]. de Freitas Pereira, T., Anjos, A., De Martino, J. M., & Marcel, S. (2013, June). Can face anti-spoofing countermeasures work in a real world scenario? In 2013, International Conference on Biometrics (ICB) (pp. 1-8). IEEE. https://doi.org/10.1109/ICB.2013.6612981
[14]. de Freitas Pereira, T., Komulainen, J., Anjos, A., De Martino, J. M., Hadid, A., Pietikäinen, M., & Marcel, S. (2014). Face liveness detection using dynamic texture. EURASIP Journal on Image and Video Processing, 2014(1), 2. https://doi.org/10.1186/1687-5281-2014-2
[15]. Galbally, J., & Marcel, S. (2014, August). Face antispoofing based on general image quality assessment. In 2014, 22nd International Conference on Pattern Recognition (pp. 1173-1178). IEEE. https://doi.org/10.11 09/ICPR.2014.211
[16]. Galbally, J., Marcel, S., & Fierrez, J. (2014). Biometric antispoofing methods: A survey in face recognition. IEEE Access, 2, 1530-1552. https://doi.org/ 10.11 09/ ACCESS. 2014.2381273
[17]. Garcia, D. C., & de Queiroz, R. L. (2015). Facespoofing 2D-detection based on moiré-pattern analysis. IEEE transactions on information forensics and security, 10(4), 778-786.https://doi.org/10.1109/TIFS.2015.2411 394
[18]. Garud, D., & Agrwal, S. S. (2016, September). Face liveness detection. In 2016, International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT) (pp. 789-792). IEEE. https://doi. org/ 10.1109/ICACDOT.2016.7877695
[19]. Housam, K. B., Lau, S. H., Pang, Y. H., Liew, Y. P., & Chiang, M. L. (2014, May). Face spoofing detection based on improved local graph structure. In 2014, International Conference on Information Science & Applications (ICISA) (pp. 1-4). IEEE. https://doi.org/10.1 109/ICISA.2014.6847399
[20]. Ito, K., Okano, T., & Aoki, T. (2017, December). Recent advances in biometrie security: A case study of liveness detection in face recognition. In 2017, Asia- Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (pp. 220- 227). IEEE. https://doi.org/10.1109/APSIPA.2017.8282031
[21]. Kähm, O., &Damer, N. (2012, September). 2D face liveness detection: An overview. In 2012, BIOSIGREVIEW Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG) (pp. 1-12). IEEE.
[22]. Killioğlu, M., Taşkiran, M., & Kahraman, N. (2017, January). Anti-spoofing in face recognition with liveness th detection using pupil tracking. In 2017, IEEE 15 International Symposium on Applied Machine Intelligence and Informatics (SAMI) (pp.000087-000092). EEE. https://doi.org/10.1109/SAMI.2017.7880281
[23]. Kim, S., Yu, S., Kim, K., Ban, Y., & Lee, S. (2013, June). Face liveness detection using variable focusing. In 2013, International Conference on Biometrics (ICB) (pp. 1-6). IEEE. https://doi.org/10.1109/ICB.2013.6613002
[24]. Kim, W., Suh, S., & Han, J. J. (2015). Face liveness detection from a single image via diffusion speed model. IEEE transactions on Image processing, 24(8), 2456-2465. https://doi.org/10.1109/TIP.2015.2422574
[25]. Kim, Y., Yoo, J. H., & Choi, K. (2011). A motion and similarity-based fake detection method for biometric face recognition systems. IEEE Transactions on Consumer Electronics, 57(2), 756-762. https://doi.org/10.1109/TCE. 2 011.595 5219
[26]. Kollreider, K., Fronthaler, H., & Bigun, J. (2005, October). Evaluating liveness by face images and the structure tensor. In Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05) (pp. 75-80). IEEE. https://doi.org/10.1109/AUTOID.2005.20
[27]. Kollreider, K., Fronthaler, H., & Bigun, J. (2008, June). Verifying liveness by multiple experts in face biometrics. In 2008, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 1-6). IEEE. https://doi.org/10.1109/CVPRW.2 008.45 63115
[28]. Kollreider, K., Fronthaler, H., & Bigun, J. (2009). Nonintrusive liveness detection by face images. Image and Vision Computing, 27(3), 233-244. https://doi.org/10.101 6/j.imavis.2007.05.004
[29]. Kose, N., & Dugelay, J. L. (2012, May). Classification of captured and recaptured images to detect photograph spoofing. In 2012, International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 1027- 1032). IEEE. https://doi.org/10.1109/ICIEV.2012.6317336
[30]. Królak, A., &Strumiłło, P. (2012). Eye-blink detection system for human–computer interaction. Universal Access in the Information Society, 11(4), 409- 419.https://doi.org/10.1007/s10209-011-0256-6
[31]. Kumar, S., Singh, S., & Kumar, J. (2017, May). A comparative study on face spoofing attacks. In 2017, International Conference on Computing, Communication and Automation (ICCCA) (pp. 1104- 1108). IEEE. https://doi.org/10.1109/CCAA.2017.822996 1
[32]. Lee, T. W., Ju, G. H., Liu, H. S., & Wu, Y. S. (2013, May). Liveness detection using frequency entropy of image sequences. In 2013, IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2367- 2370). IEEE. https://doi.org/10.1109/ICASSP.2013.66 38078
[33]. Li, J. W. (2008, July). Eye blink detection based on multiple Gabor response waves. In 2008, International Conference on Machine Learning and Cybernetics (Vol. 5, pp. 2852-2856). IEEE. https://doi.org/10.1109/ICMLC. 20 08.4620894
[34]. Li, J., Wang, Y., Tan, T., & Jain, A. K. (2004, August). Live face detection based on the analysis of fourier spectra. In Biometric technology for human identification (Vol. 5404, pp. 296-303). International Society for Optics and Photonics. https://doi.org/10.111 7/12.541955
[35]. Luan, X., Wang, H., Ou, W., & Liu, L. (2017, December). Face liveness detection with recaptured feature extraction. In 2017, International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) (pp. 429-432). IEEE. https://doi.org/10.1109/SPAC.2017.830 4317
[36]. Määttä, J., Hadid, A., & Pietikäinen, M. (2011, October). Face spoofing detection from single images using micro-texture analysis. In 2011, international Joint Conference on Biometrics (IJCB) (pp. 1-7). IEEE. https://doi.org/10.1109/IJCB.2011.6117510
[37]. Määttä, J., Hadid, A., & Pietikäinen, M. (2012). Face spoofing detection from single images using texture and local shape analysis. IET Biometrics, 1(1), 3- 10. https://doi.org/10.1049/iet-bmt.2011.0009
[38]. Malik, K., & Smolka, B. (2014, April). Eye blink detection using local binar y patterns. In 2014, International Conference on Multimedia Computing and Systems (ICMCS) (pp. 385-390). IEEE. https://doi.org/1 0.1109/ICMCS.2014. 6911268
[39]. Matthew, P., & Anderson, M. (2014, September). Novel Categorisation Techniques for Liveness Detection. In 2014, Eighth International Conference on Next Generation Mobile Apps, Services and Technologies (pp. 153-158). IEEE. https://doi.org/10.1109/NGMAST.2014.51
[40]. Nalinakshi, B. G., Hatture, S. M., Gabasavalgi, M. S., & Karchi, R. P. (2013). Liveness detection technique for prevention of spoof attack in face recognition system. International Journal of Emerging Technology and Advanced Engineering, 3(12), 627-633.
[41]. Pan, G., Sun, L., Wu, Z., & Lao, S. (2007, October). Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In 2007, IEEE 11th International Conference on Computer Vision (pp. 1-8). IEEE. https://doi.org/10.1109/ICCV.2007.4409068
[42]. Pan, G., Wu, Z., & Sun, L. (2008). Liveness detection for face recognition. Recent Advances in Face Recognition, 109-124.
[43]. Parveen, S., Ahmad, S. M. S., Hanafi, M., & Adnan, W. A. W. (2015). Face anti-spoofing methods. Current Science, 1491-1500. https://www.jstor.org/stable/24905 394
[44]. Peng, J., & Chan, P. P. (2014, July). Face liveness detection for combating the spoofing attack in face recognition. In 2014, International Conference on Wavelet Analysis and Pattern Recognition (pp. 176-181). IEEE. https://doi.org/10.1109/ICWAPR.2014.6961311
[45]. Peng, J., & Chan, P. P. (2014, July). Face liveness detection for combating the spoofing attack in face recognition. In 2014, International Conference on Wavelet Analysis and Pattern Recognition (pp. 176-181). IEEE. https://doi.org/10.1109/ICWAPR.2014.6961311
[46]. Pinto, A., Pedrini, H., Schwartz, W. R., & Rocha, A. (2015). Face spoofing detection through visual codebooks of spectral temporal cubes. IEEE Transactions on Image Processing, 24(12), 4726-4740. https://doi.org /10 1109/TIP.2015.2466088
[47]. Pravallika, P., & Prasad, K. S. (2016, August). SVM classification for fake biometric detection using image quality assessment: Application to iris, face and palm print. In 2016, International Conference on Inventive Computation Technologies (ICICT) (Vol. 1, pp. 1-6). IEEE. https://doi.org/10.1109/ INVENTIVE.2016.7823189
[48]. Schwartz, W. R., Rocha, A., & Pedrini, H. (2011, October). Face spoofing detection through partial least squares and low-level descriptors. In 2011, International Joint Conference on Biometrics (IJCB) (pp. 1-8). IEEE. https://doi.org/10.1109/IJCB.2011.6117592
[49]. Sharma, A., & Dahiya, S. SPOOF DETECTION: (2014) Application to face recognition. International Journal on Emerging Technologies, 2(4), 26-29
[50]. Siddiqui, T. A., Bharadwaj, S., Dhamecha, T. I., Agarwal, A., Vatsa, M., Singh, R., & Ratha, N. (2016, December). Face anti-spoofing with multifeature videolet aggregation. In 2016, 23rd International Conference on Pattern Recognition (ICPR) (pp. 1035- 1040). IEEE. https://doi.org/10.1109/ICPR .2016.7899772
[51]. Singh, A. K., Joshi, P., & Nandi, G. C. (2014, July). Face recognition with liveness detection using eye and mouth movement. In 2014, International Conference on Signal Propagation and Computer Technology (ICSPCT) (pp. 592-597). IEEE. https://doi.org/10.1109/ ICSPCT. 2014.6884911
[52]. Sun, L., Pan, G., Wu, Z., & Lao, S. (2007, August). Blinking-based live face detection using conditional random fields. In International Conference on Biometrics (pp. 252-260). Springer, Berlin, Heidelberg. https://doi.org/ 10.1007/978-3 -540-74549-5_27
[53]. Tirunagari, S., Poh, N., Windridge, D., Iorliam, A., Suki, N., & Ho, A. T. (2015). Detection of face spoofing using visual dynamics. IEEE Transactions on Information Forensics and Security, 10(4), 762-777. https://doi.org/ 10.1109/TIFS.2015.2406533
[54]. Tronci, R., Muntoni, D., Fadda, G., Pili, M., Sirena, N., Murgia, G., Ristori, M., Ricerche, S., & Roli, F. (2011, October). Fusion of multiple clues for photo-attack detection in face recognition systems. In 2011, International Joint Conference on Biometrics (IJCB) (pp. 1-6). IEEE. https://doi.org/10.110 9/IJCB.2011.6117522
[55]. Wen, D., Han, H., & Jain, A. K. (2015). Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 10(4), 746-761. https://doi.org/10.1109/TIFS.2015.2400395
[56]. Yan, J., Zhang, Z., Lei, Z., Yi, D., & Li, S. Z. (2012, December). Face liveness detection by exploring th multiple scenic clues. In 2012, 12 International Conference on Control Automation Robotics & Vision (ICARCV) (pp. 188-193). IEEE. https://doi.org/10.1109/IC ARCV.2012.6485156
[57]. Yang, J., Lei, Z., Liao, S., & Li, S. Z. (2013, June). Face liveness detection with component dependent descriptor. In 2013, International Conference on Biometrics (ICB) (pp. 1-6). IEEE.https://doi.org/10.1 109/ICB.2013. 6612955
[58]. Yang, L. (2014, July). Face liveness detection by focusing on frontal faces and image backgrounds. In 2014, International Conference on Wavelet Analysis and Pattern Recognition (pp. 93-97). IEEE. https://doi.org/10. 1109/ICWAPR.2014.6961297
[59]. Yeh, C. H., & Chang, H. H. (2018, March). Face liveness detection based on perceptual image quality assessment features with multi-scale analysis. In 2018, IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 49-56). IEEE. https://doi.org/10.1109/ WACV.2018.00012
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.