Production and use of Solid Recovered Fuel for a Resilient Solid Waste Management in Smart Cities-Eu Approach

0*, Eva Miller**, Jörg Maier***, Thomas Glorius****, Günter Scheffknecht*****, Gajanan Sabnis******
*-*** Department of Firing Systems, University of Stuttgart, Germany.
**** Department for Solid Recovered Fuel, REMONDIS Rheinland.
***** Professor and Head of the Institute of Combustion and Power Plant Technology, University of Stuttgart, Germany.
****** Professional Engineer, Columbia, California, Maryland, US.
Periodicity:August - October'2019
DOI : https://doi.org/10.26634/jps.7.3.16882

Abstract

In support of the European Union's (EU) energy polices to increase the production of bioenergy, the production and use of Solid Recovered Fuels (SRF) were researched within the European Union's 6 and 7 research and development framework programs. It was shown that the use of SRF, which are produced from non-hazardous wastes, are a viable option to reduce fossil CO emissions, protect natural resources, recover energy from low polluting wastes, reduce landfill 2 disposal, stimulate regional economies, etc. Thus, the use of high quality SRF, e.g., in cement kilns and Combined Heat and Power (CHP) plants, working according to the EU Waste Incineration Directive (WID), is considered a tool for a resilient solid waste management strategy in smart cities of the future. This could also include urban planning that has an infrastructure for use of SRF in waste-to-energy plants or in waste-to-cement plants. A quality management system in accordance with RAL-GZ 724 guarantees reliable and high qualities of the produced fuel. Adding online analysis technology multiplies available analytical information and helps to improve SRF-quality additionally. Thus, combustion of SRF in CHP-plants or co-processing of a high quality SRF in cement kilns in combination with recycling of valuable materials like Fe-/NF metals should be a viable concept to implement for any smart city, regardless of the population size and location, with slight modifications to suit local conditions.

Keywords

Bioenergy, Co-Combustion, Fuel Characterization, Municipal Solid Waste, Quality Management System, Solid Recovered Fuels, SRF-RDF.

How to Cite this Article?

Fuller, A., Miller, E., Maier, J., Glorius, T., Scheffknecht, G., and Sabnis, G. (2019). Production and use of Solid Recovered Fuel for a Resilient Solid Waste Management in Smart Cities-Eu Approach. i-manager's Journal on Power Systems Engineering, 7(3), 1-24. https://doi.org/10.26634/jps.7.3.16882

References

[1]. Baumbach, G. (2012). Air Quality Control: Formation and Sources, Dispersion, Characteristics and Impact of Air Pollutants-Measuring Methods, Techniques for Reduction of Emissions and Regulations for Air Quality Control. Springer Science & Business Media.
[2]. Bessi, C., Lombardi, L., Meoni, R., Canovai, A., & Corti, A. (2016). Solid recovered fuel: An experiment on classification and potential applications. Waste Management, 47, 184-194. https://doi.org/10.1016/j. wasman.2015.08.012
[3]. Del Zotto, L., Tallini, A., Di Simone, G., Molinari, G., & Cedola, L. (2015). Energy enhancement of solid recovered fuel within systems of conventional thermal power generation. Energy Procedia, 81, 319-338 https://doi.org/10.1016/j.egypro.2015.12.102
[4]. Dunnu, G., Maier, J., Hilber, T., & Scheffknecht, G. (2009). Characterisation of large solid recovered fuel particles for direct co-firing in large PF power plants. Fuel, 88(12), 2403-2408. https://doi.org/10.1016/j.fuel.2009. 03.004
[5]. Edo-Alcón, N., Gallardo, A., & Colomer-Mendoza, F. J. (2016). Characterization of SRF from MBT plants: Influence of the input waste and of the processing technologies. Fuel Processing Technology, 153, 19-27. https://doi.org/10.1016/j.fuproc.2016.07.028
[6]. Garg, A., Smith, R., Hill, D., Simms, N., & Pollard, S. (2007). Wastes as Co-Fuels: The Policy Framework for Solid Recovered Fuel (SRF) in Europe, with UK Implications. Environmental Science & Technology, 41(14), 4868-4874. https://doi.org/10.1021/es062163e
[7]. Garg, A., Smith, R., Hill, D., Longhurst, P. J., Pollard, S. J. T., & Simms, N. J. (2009). An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste. Waste Management, 29(8), 2289-2297. https://doi.org/10.1016/ j.wasman.2009.03.031
[8]. Glorius, T. (2014). Production and use of Solid Recovered Fuels-developments and prospects. ZKG International (Deutsch_englische Ausgable. 1995), (9), 72-80. Retrieved from https://www.zkg.de/en/artikel/zkg_ Production_and_use_of_Solid_Recovered_Fuels_develo pments_and_prospects_2067888.html
[9]. Glorius, T. (2018). REMONDIS Rheinland: Secondary fuels from the region's waste. Unter Mitarbeit von EUFörderung. Expo Fortschrittsmotor Klimaschutz GmbH; KlimaExpo.NRW. Gelsenkirchen, Germany. Retrieved from http://exhibition.klimaexpo.nrw/projects-pioneers/sbserftstadt. html, zuletzt geprüft am 23.11.2019.
[10]. Hilber, T., Maier, J., Scheffknecht, G., Agraniotis, M., Grammelis, P., Kakaras, E., ... & Jong, M. D. (2007). Advantages and possibilities of solid recovered fuel cocombustion in the European energy sector. Journal of the Air & Waste Management Association, 57(10), 1178- 1189. https://doi.org/10.3155/1047-3289.57.10.1178
[11]. Johansen, J. M., Aho, M., Paakkinen, K., Taipale, R., Egsgaard, H., Jakobsen, J. G., ... & Glarborg, P. (2013). Release of K, Cl, and S during combustion and cocombustion with wood of high-chlorine biomass in bench and pilot scale fuel beds. Proceedings of the Combustion Institute, 34(2), 2363-2372. https://doi.org/10.1016/ j.proci.2012.07.025
[12]. Joshi, M. P.; Patil, S. B.; & Mourya, K. (2013). Solid Waste Management on Dumping Groand in Mumbai Region - A Study. In: International Journal of Computer Applications, S. 18-22.
[13]. Miller, B. G. (2011). Clean Coal Engineering Technology. Butterworth-Heinemann.
[14]. Miller, E., Fuller, A., Maier, J., Scheffknecht, G., & Glorius, T. (2014). Research into co-combustion on European level: RECOMBIO, FP7 Project. VGB Powertech, (11), S. 32-38.
[15]. Nasrullah, M., Vainikka, P., Hannula, J., Hurme, M., & Koskinen, J. (2015). Elemental balance of SRF production process: Solid recovered fuel produced from construction and demolition waste. Fuel, 159, 280-288. https://doi.org/ 10.1016/j.fuel.2015.06.082
[16]. Nasrullah, M., Hurme, M., Oinas, P., Hannula, J., & Vainikka, P. (2017). Influence of input waste feedstock on solid recovered fuel production in a mechanical treatment plant. Fuel Processing Technology, 163, 35-44. https://doi.org/10.1016/j.fuproc.2017.03.034
[17]. Pamnani, A., & Srinivasarao, M. (2014). Municipal solid waste management in India: A review and some new results. International Journal of Civil Engineering and Technology (IJCIET), 5(2), 01-08.
[18]. Peters, B., & Smuła-Ostaszewska, J. (2012). Simultaneous prediction of potassium chloride and sulphur dioxide emissions during combustion of switchgrass. Fuel, 96, 29-42. https://doi.org/10.1016/j. fuel.2011.12.073
[19]. Rada, E. C., & Andreottola, G. (2012). RDF/SRF: Which perspective for its future in the EU. Waste Management, 6(32), 1059-1060. https://doi.org/10. 1016/j.wasman.2012.02.017
[20]. Rada, E. C., & Ragazzi, M. (2014). Selective collection as a pretreatment for indirect solid recovered fuel generation. Waste Management, 34(2), 291-297. https://doi.org/10.1016/j.wasman.2013.11.013
[21]. Rigamonti, L., Grosso, M., & Biganzoli, L. (2012). Environmental Assessment of Refuse-Derived Fuel Co- Combustion in a Coal-Fired Power Plant. Journal of Industrial Ecology, 16(5), 748-760. https://doi.org/10. 1111/j.1530-9290.2011.00428.x.
[22]. Psomopoulos, C. S. (2014). Residue derived fuels as an alternative fuel for the Hellenic power generation sector and their potential for emissions reduction. AIMS Energy, 2(3), 321-341. https://doi.org/10.3934/energy. 2014.3.321
[23]. Spliethoff, H. (2010). Power Generation from Solid Fuels. Springer Science & Business Media.
[24]. Thiel, S., & Thomé-Kozmiensky, K. J. (2012). Cocombustion of solid recovered fuels in coal-fired power plants. Waste Management & Research, 30(4), 392-403. https://doi.org/10.1177/0734242X11427946
[25]. van Loo, S., & Koppejan, J. (2010). The Handbook of Biomass Combustion and Co-Firing. Earthscan.
[26]. Vounatsos, P., Agraniotis, M., Grammelis, P., Kakaras, E., Skiadi, O., & Zarmpoutis, T. (2015). Refuse-derived fuel classification in a mechanical-biological treatment plant and its valorization with techno-economic criteria. International Journal of Environmental Science and Technology, 12(3), 1137-1146. https://doi.org/10.1007/ s13762-014-0509-z
[27]. Wagland, S. T., Kilgallon, P., Coveney, R., Garg, A., Smith, R., Longhurst, P. J., ... & Simms, N. (2011). Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor. Waste Management, 31(6), 1176-1183. https://doi.org/ 10.1016/j.wasman.2011.01.001
[28]. Zementwerke eV, V. D (Ed.) (2018). Environmental Data of the German Cement Industry 2017. Duesseldorf. Retrieved from https://www.vdz-online.de/fileadmin/ gruppen/vdz/3LiteraturRecherche/Umweltdaten/VDZ_Um weltdaten_2017_DE_EN.pdf, zuletzt geprüft am 24.01.2019.
[29]. Zheng, Y., Jensen, P. A., Jensen, A. D., Sander, B., & Junker, H. (2007). Ash transformation during co-firing coal and straw. Fuel, 86(7-8), 1008-1020. https://doi.org/10. 1016/j.fuel.2006.10.008
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.